Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen
Main>Karl Kirst K (Leerzeile) |
Main>Peter Hofbauer Keine Bearbeitungszusammenfassung |
||
Zeile 2: | Zeile 2: | ||
== Die Graphen der Funktionen mit f(x) = x<sup>-1/n</sup>, n <small>∈</small> IN == | == Die Graphen der Funktionen mit f(x) = x<sup>-1/n</sup>, n <small>∈</small> IN<sup>*</sup> == | ||
=== Vergleich mit Funktionen aus Stufe 3 === | === Vergleich mit Funktionen aus Stufe 3 === | ||
Zeile 8: | Zeile 8: | ||
{{Arbeiten|NUMMER=1|ARBEIT= | {{Arbeiten|NUMMER=1|ARBEIT= | ||
Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot | Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern. | ||
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf | # Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf | ||
#* Definitionsbereich | #* Definitionsbereich | ||
Zeile 16: | Zeile 16: | ||
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre> | # Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre> | ||
:{{Lösung versteckt| | :{{Lösung versteckt| | ||
: Die Definitionsbereiche der roten und blauen Funktionen sind für | : Die Definitionsbereiche der roten und blauen Funktionen sind für n>1 nicht-negativ. Im Definitionsbereich der blauen Funktionen muss ferner auch die 0 ausgeschlossen werden. Die verschiedenen blauen Graphen sind streng-monoton fallend. Rote und blaue Graphen haben alle den Punkt (1,1) gemeinsam (Begründung: 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}</math>). Der Wertebereich der blauen Graphen ist ]0,∞[. | ||
}} | }} | ||
}} | }} | ||
Zeile 23: | Zeile 23: | ||
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang: | Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang: | ||
:''Für eine reelle Zahl | :''Für eine reelle Zahl a und eine natürliche Zahl n<math>\neq</math>0 wird definiert:'' | ||
:<math>a^{-n} := \textstyle \frac{1}{a^n}</math> für <math>a \neq 0.</math> | :<math>a^{-n} := \textstyle \frac{1}{a^n}</math> für <math>a \neq 0.</math> | ||
Zeile 49: | Zeile 49: | ||
|- valign="top" | |- valign="top" | ||
|<big>'''Beispiel I:'''</big> | |<big>'''Beispiel I:'''</big> | ||
Es sei | Es sei g eine Potenzfunktion, definiert durch <math>g(x)=x^{\frac{1}{3}}</math>. Gesucht ist die Umkehrfunktion <math>g^{\,-1}=:f</math> von <math>\!\,g</math>. | ||
<math>g^{\,-1}</math> ergibt sich aus <math>\!\,g</math> durch Auflösen nach <math>\!\,x</math>. Es ist:<br /> | <math>g^{\,-1}</math> ergibt sich aus <math>\!\,g</math> durch Auflösen nach <math>\!\,x</math>. Es ist:<br /> | ||
Zeile 56: | Zeile 56: | ||
&=& x. &\,& && \end{matrix}</math> | &=& x. &\,& && \end{matrix}</math> | ||
Vertauschen von | Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)<math>=</math>x<sup>3</sup>. | ||
! width="310" align="left" |<ggb_applet height="300" width="300" showMenuBar="false" showResetIcon="true" filename="w_x3_001.ggb" /> | ! width="310" align="left" |<ggb_applet height="300" width="300" showMenuBar="false" showResetIcon="true" filename="w_x3_001.ggb" /> | ||
|- | |- | ||
|<big>'''Beispiel II:'''</big> | |<big>'''Beispiel II:'''</big> | ||
Es sei | Es sei f eine Potenzfunktion, nun definiert durch <math>f(x)=x^{- \frac 1 3}</math> mit Definitionsbereich ID = IR<sup>+</sup>. Gesucht ist wieder ihre Umkehrfunktion f<sup>-1</sup>. | ||
Auflösen nach | Auflösen nach x ergibt:<br /> | ||
<math>\begin{matrix}y &=& x^{- \frac 1 3}. &|& (\,)^3\\ | <math>\begin{matrix}y &=& x^{- \frac 1 3}. &|& (\,)^3\\ | ||
y^3 &=& x^{- \frac 3 3}, && \\ | y^3 &=& x^{- \frac 3 3}, && \\ | ||
Zeile 74: | Zeile 74: | ||
|} | |} | ||
''Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von < | ''Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f<sup>-1</sup> und f(x)<math>=</math>x<sup>-1</sup>!'' | ||
=== Vergleich mit Potenzfunktionen der Stufe 1 === | === Vergleich mit Potenzfunktionen der Stufe 1 === | ||
Zeile 89: | Zeile 89: | ||
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?<br /> | Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?<br /> | ||
Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!<br /> | Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!<br /> | ||
{{Lösung versteckt| Potenzfunktionen mit <math>f(x) = x^{\frac 1 n}</math> mit <math>n\geq2</math> sind auf ihrem Definitionsbereich <math>\mathbb{D}=\mathbb{R}^+_0</math> streng monoton steigend. Deswegen gibt es auf diesem Bereich eine Umkehrfunktion und zwar von der Bauart | {{Lösung versteckt| Potenzfunktionen mit <math>f(x) = x^{\frac 1 n}</math> mit <math>n\geq2</math> sind auf ihrem Definitionsbereich <math>\mathbb{D}=\mathbb{R}^+_0</math> streng monoton steigend. Deswegen gibt es auf diesem Bereich eine Umkehrfunktion und zwar von der Bauart f(x)<math>=</math>x<sup>n</sup>.<br />Hat man aber eine Potenzfunktion f(x)<math>=</math>x<sup>n</sup> mit <math>n\geq2</math> (also eine aus der Stufe 1 dieses Lernpfades) vorgegeben, so ist sie auf ihrem Defintionsbereich <math>\mathbb{D}=\mathbb{R}</math> nicht überall streng monoton. Die Umkehrbarkeit ist aber nur auf streng monotonen Intervallen möglich. Betrachtet man f auf dem eingeschränkten Definitionsbereich <math>\mathbb{R}^+_0</math>, so ist sie dort streng monoton und damit umkehrbar. Die Umkehrfunktion ist dort <math>f(x) = x^{\frac 1 n}</math>. }} | ||
}} | }} | ||
Version vom 17. Januar 2011, 12:48 Uhr
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN*
Vergleich mit Funktionen aus Stufe 3
Die Datei [INVALID] wurde nicht gefunden.
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl a und eine natürliche Zahl n0 wird definiert:
- für
Auf unsere Situation angewandt ergibt sich:
Vorlage:Arbeiten |
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel I:
Es sei g eine Potenzfunktion, definiert durch . Gesucht ist die Umkehrfunktion von . ergibt sich aus durch Auflösen nach . Es ist: Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)x3. |
Die Datei [INVALID] wurde nicht gefunden. |
---|---|
Beispiel II:
Es sei f eine Potenzfunktion, nun definiert durch mit Definitionsbereich ID = IR+. Gesucht ist wieder ihre Umkehrfunktion f-1. Auflösen nach x ergibt: |
Die Datei [INVALID] wurde nicht gefunden. |
Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f-1 und f(x)x-1!
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit .
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
(* Bearbeitung freiwillig, Ergänzung)
Die Datei [INVALID] wurde nicht gefunden.
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Die Datei [INVALID] wurde nicht gefunden. Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit zusammengesetzt.
|
Und nun gehts zum Abschlusstest |