Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen
Main>Jan Wörler (Layout, Tabelle) |
Main>Jan Wörler |
||
Zeile 50: | Zeile 50: | ||
|- valign="top" | |- valign="top" | ||
|<big>'''Beispiel I:'''</big> | |<big>'''Beispiel I:'''</big> | ||
Es sei <math>g</math> eine Potenzfunktion, definiert durch <math>g(x)=x^{\frac 1 3}</math>. Gesucht ist die Umkehrfunktion <math>g^{\,-1}=:f</math> von <math>g</math>. | Es sei <math>g</math> eine Potenzfunktion, definiert durch <math>g(x)=x^{\frac{1}{3}}</math>. Gesucht ist die Umkehrfunktion <math>g^{\,-1}=:f</math> von <math>\!\,g</math>. | ||
<math>g^{\,-1}</math> ergibt sich aus <math>g</math> durch Auflösen nach <math>x</math>. Es ist:<br /> | <math>g^{\,-1}</math> ergibt sich aus <math>g</math> durch Auflösen nach <math>x</math>. Es ist:<br /> |
Version vom 31. März 2009, 19:05 Uhr
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN
Vergleich mit Funktionen aus Stufe 3
Die Datei [INVALID] wurde nicht gefunden.
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl und eine natürliche Zahl wird definiert:
- für
Auf unsere Situation angewandt ergibt sich:
Vorlage:Arbeiten |
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel I:
Es sei eine Potenzfunktion, definiert durch . Gesucht ist die Umkehrfunktion von . ergibt sich aus durch Auflösen nach . Es ist: Vertauschen von und ergibt schließlich die gesuchte Funktion: . |
Die Datei [INVALID] wurde nicht gefunden. |
---|---|
Beispiel II:
Es sei eine Potenzfunktion, nun definiert durch mit Definitionsbereich ID = IR+. Gesucht ist wieder ihre Umkehrfunktion . Auflösen nach ergibt: |
Die Datei [INVALID] wurde nicht gefunden. |
Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von und !
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit .
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
(* Bearbeitung freiwillig, Ergänzung)
Die Datei [INVALID] wurde nicht gefunden.
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Die Datei [INVALID] wurde nicht gefunden. Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit zusammengesetzt.
|
Und nun gehts zum Abschlusstest |