Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Hans-Georg Weigand
Main>Hans-Georg Weigand
Zeile 105: Zeile 105:
==== Einschränkung auf IR<sup>+</sup><sub>0</sub> ====
==== Einschränkung auf IR<sup>+</sup><sub>0</sub> ====


Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:
Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung: <math>\sqrt[3]{-27}= -3,</math>
*<math>\sqrt[3]{-27}= -3,</math>
*Wegen <math>(-3)^3 = -27 </math> erscheint das richtig zu sein.


 
Wegen <math>(-3)^3 = -27 </math> erscheint das richtig zu sein, allerdings kann diese Festlegung zu Wiedersprüchen führen, wie das folgende Beispiel zeigt: :<math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>
Allerdings kann diese Festlegung zu Wiedersprüchen führen, wie das folgende Beispiel zeigt: :<math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>





Version vom 11. Februar 2009, 21:44 Uhr

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Funktionsgraph kennenlernen

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

neue Datei Geogebra.svg datei

Bezeichungen: Potenzen und Wurzeln

Wir betrachten hier Potenzfunktionen mit ,

Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ID ist - wie die Aufgaben 1 und 2 gezeigt haben - nicht negativ (Nähere Erläuterungen hierzu: siehe unten) , also ID = IR+0

Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:


Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .


Beispiel: Quadratwurzeln

Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:

Die Lösung ist ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.


Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Die Lösung ist also angeben.

Beispiel: Kubikwurzel

Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:

Einfluss von Parametern

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+0

Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:

Wegen erscheint das richtig zu sein, allerdings kann diese Festlegung zu Wiedersprüchen führen, wie das folgende Beispiel zeigt: :


Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die nicht-negativen reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.