Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Main>Jan Wörler |
Main>Jan Wörler |
||
Zeile 7: | Zeile 7: | ||
== Die Graphen der Funktionen mit f(x) = x<sup>1/n</sup>, n <small>∈</small> IN == | == Die Graphen der Funktionen mit f(x) = x<sup>1/n</sup>, n <small>∈</small> IN == | ||
=== | === Funkztionsgraph kennenlernen === | ||
{| cellspacing="10" | {| cellspacing="10" | ||
|- style="vertical-align:top;" | |- style="vertical-align:top;" | ||
| {{Arbeiten|NUMMER=1|ARBEIT= | | {{Arbeiten|NUMMER=1|ARBEIT= | ||
Im Applet rechst siehst Du den Graphen der Funktion <math>f(x)=x^{\frac 1 n}</math> für <math>n \in \{1,2,3,4,5\}</math>.<br /> | |||
# Beschreibe | # Beschreibe den Graphen und achte dabei auf | ||
#* Definitionsbereich | #* Definitionsbereich | ||
#* Monotonie | #* Monotonie | ||
#* größte und kleinste Funktionswerte | #* größte und kleinste Funktionswerte | ||
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre> | # Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre> | ||
}}<br> | }}<br> | ||
|| <ggb_applet height="450" width="550" showMenuBar="false" showResetIcon="true" | || <ggb_applet height="450" width="550" showMenuBar="false" showResetIcon="true" | ||
filename="Woerler_001b.ggb" /> | filename="Woerler_001b.ggb" /> | ||
|} | |} | ||
=== Vergleich mit Funktionen aus Stufe 2 === | === Vergleich mit Funktionen aus Stufe 2 === |
Version vom 11. Februar 2009, 13:25 Uhr
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Funkztionsgraph kennenlernen
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Vergleich mit Funktionen aus Stufe 2
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
neue Datei datei
Potenzen und Wurzeln
Eine Funktion mit der Gleichung mit IR+ heißt n-te Wurzelfunktion.
Wegen: gilt: Potenzfunktionen mit sind n-te Wurzelfunktionen .
Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:
Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .
Beispiel: Quadratwurzeln
Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:
Die mathematisch richtige Lösung ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.
Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:
Auch hier wird man nur die physikalisch sinnvolle Lösung angeben.
Beispiel: Kubikwurzel
Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:
Einfluss von Parametern
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen
Einschränkung auf IR+
Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:
Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:
Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:
- mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass
- .
Dann gilt: IDg = IR.