Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
Keine Bearbeitungszusammenfassung
Main>Jan Wörler
Keine Bearbeitungszusammenfassung
Zeile 44: Zeile 44:
Offenbar kann man zum Beispiel wegen  
Offenbar kann man zum Beispiel wegen  
* <math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3.</math>
* <math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3.</math>
die Wurzelfunktionen f(x)=\sqrt[n]{x} zumindest bei ungradem n sowohl für positive als auch negative x definieren. Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:
die Wurzelfunktionen <math>f(x)=\sqrt[n]{x}</math> zumindest bei ungradem n sowohl für positive als auch negative x definieren. Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:
* <math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2</math>
* <math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>
 
Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich der Wurzelfunktionen grundsätzlich nur auf positive reelle Zahlen ein, d.h.
 
<math>f(x) = \sqrt[n]{x}  mit n \in \mathbb{N} und \mathbb{D}=\mathbb{R}_{\geq 0}</math>

Version vom 19. Januar 2009, 15:24 Uhr

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Vergleiche mit Funktionen aus Stufe 2

  • Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
  • Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?

Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.


Die Datei [INVALID] wurde nicht gefunden.

Potenzen und Wurzeln

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:

Darin ist die n-te Wurzel festgelegt über:

Eine Funktion mit der Gleichung mit heißt Wurzelfunktion

Beispiele:

  • , aber
  • , nicht definiert.
  • , aber auch


Die Datei [INVALID] wurde nicht gefunden.

Der Definitionsbereich

Offenbar kann man zum Beispiel wegen

die Wurzelfunktionen zumindest bei ungradem n sowohl für positive als auch negative x definieren. Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:

Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich der Wurzelfunktionen grundsätzlich nur auf positive reelle Zahlen ein, d.h.