Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
Keine Bearbeitungszusammenfassung
Main>Jan Wörler
Keine Bearbeitungszusammenfassung
Zeile 21: Zeile 21:
Beispiele:  
Beispiele:  


<math>\sqrt{16} = \begin{cases} 4\cdot 4\\ -4 \cdot 4 \end{cases}.</math>
* <math>16 = \begin{cases} 4\cdot 4 &= 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \Rightarrow \sqrt{16} = \pm 4</math>, aber
* <math>-16 = \begin{cases} (-1)\cdot 4\cdot 4 &= (-1)\cdot 4^2\\ (-1)\cdot (-4) \cdot (-4) &= (-1)\cdot (-4)^2 \end{cases} \Rightarrow \sqrt{-16}=4\cdot\sqrt{-1}</math>, nicht definiert!


* <math>\sqrt[2]{16}:=\sqrt{16}=\sqrt{4\cdot 4} = \sqrt{4^2} = \sqrt{4}^2 = 4</math>, dagegen
* 4\cdot4 = 16 = -4 \cdot -4 \Leftarrow \sqrt{1}
* <math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math>, aber auch
* <math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math>, aber auch
* <math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3.</math>
* <math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3.</math>

Version vom 19. Januar 2009, 11:04 Uhr

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben.

Die Datei [INVALID] wurde nicht gefunden.

Potenzen und Wurzeln

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:

Darin ist die n-te Wurzel festgelegt über:

Beispiele:

  • , aber
  • , nicht definiert!
  • , aber auch

Die Datei [INVALID] wurde nicht gefunden.