Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
(Lösung zu Aufgabe 5: Layout)
Main>Jan Wörler
(Aufgabe 1.3 Lösung ergänzt)
Zeile 22: Zeile 22:
:* Die Graphen sind stets Achsensymmetrisch zur y-Achse.  
:* Die Graphen sind stets Achsensymmetrisch zur y-Achse.  
:* Für <math>n>1</math> sind alle Graphen im Intervall ]-∞,0[ streng monoton fallend, im Intervall ]0,∞[ streng monoton steigend; die Graphen verlaufen durch den Ursprung (0;0) und 0 ist der kleinste Funktionswert. Ein größter Funktionswert wird nicht angenommen.<br />
:* Für <math>n>1</math> sind alle Graphen im Intervall ]-∞,0[ streng monoton fallend, im Intervall ]0,∞[ streng monoton steigend; die Graphen verlaufen durch den Ursprung (0;0) und 0 ist der kleinste Funktionswert. Ein größter Funktionswert wird nicht angenommen.<br />
:<br />
:zu 2.) Alle Graphen haben die Punkte (-1;1) und (1;1) gemeinsam.  
:zu 2.) Alle Graphen haben die Punkte (-1;1) und (1;1) gemeinsam.  
:* Begründung für Punkt (-1;1): Für den Fall <math>n=0</math> gilt <math>(-1)^0=1</math> nach Defition der Potenzen. Alle anderen Exponenten <math>\textstyle n \in \{2,4,6,8,10,...\}</math> sind Vielfache von 2, also von der Art <math>2 \cdot k</math> für alle <math>k \in {\Bbb N}</math>; dann gilt: <math>(-1)^n=(-1)^{2 \cdot k}= 1^k = 1</math> für alle <math>k \in {\Bbb N}.</math>
:* Begründung für Punkt (-1;1): Für den Fall <math>n=0</math> gilt <math>(-1)^0=1</math> nach Defition der Potenzen. Alle anderen Exponenten <math>\textstyle n \in \{2,4,6,8,10,...\}</math> sind Vielfache von 2, also von der Art <math>2 \cdot k</math> für alle <math>k \in {\Bbb N}</math>; dann gilt: <math>(-1)^n=(-1)^{2 \cdot k}= 1^k = 1</math> für alle <math>k \in {\Bbb N}.</math>
:* Begründung für Punkt (1;1): Für beliebige <math>r \in {\Bbb R}</math> ist <math>1^r = r</math> und damit insbesondere für <math>r \in {\Bbb N}</math>.
:* Begründung für Punkt (1;1): Für beliebige <math>r \in {\Bbb R}</math> ist <math>1^r = r</math> und damit insbesondere für <math>r \in {\Bbb N}</math>.
:zu 3.) Was will man denn hier hören? XXX
:<br />
:zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert.
:: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die Fuktionswerte kleiner, an den Stellen x für <math>x< -1</math> bzw. <math>x > 1</math> werden die Funktionswerte größer.
:<br />
:zu 4.) Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br>
:zu 4.) Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br>
: Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>.
: Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>.

Version vom 31. März 2009, 14:31 Uhr

Die Graphen der Funktionen mit f(x) = xn, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste dein Wissen

Vorlage:Arbeiten

Die Graphen von f(x) = a xn, mit a IR

Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

Vorlage:Arbeiten Die Datei [INVALID] wurde nicht gefunden.


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste Dein Wissen



Maehnrot.jpg Als nächstes erfährst du etwas über Potenzfunktionen mit negativen ganzzahligen Exponenten.

Datei:Pfeil.gif   Hier geht es weiter.