Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Drei-Würfel-Problem: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karl Kirst
(katfix)
Main>Florian Bogner
K (A 3.1 Lösungshilfen)
Zeile 27: Zeile 27:


Lösungshilfen: {{versteckt|
Lösungshilfen: {{versteckt|
:*Mit Hilfe einer Urnensimulation kannst du unter anderem auch diesen dreifachen Würfelwurf simulieren. (Wie geht das? 6 Kugeln in der Urne; dreimaliges Ziehen mit zurücklegen)
:*Mit Hilfe einer Urnensimulation kannst du unter anderem auch diesen dreifachen Würfelwurf simulieren.  
:Funktioniert die Java-Simulation bei dir nicht, baue dir eine „Socken-Urne“: sechs Kugeln (o. ä.) in einer Socke!   
: Brauchst du einen Tipp? 6 Kugeln in der Urne; dreimaliges Ziehen mit Zurücklegen.
: Funktioniert die Java-Simulation bei dir nicht, baue dir doch einfach eine „Socken-Urne“: sechs unterscheidbare Gegenstände in einer Socke!   


:*Führe dies <u>mit</u> und <u>ohne</u> Beachtung der Reihenfolge durch.  
:*Führe dies <u>mit</u> und <u>ohne</u> Beachtung der Reihenfolge durch. Was fällt dir auf?
 
:*Was fällt dir auf?


:*Denke nochmal an „Gustavs Glücksspiel“. Wenn er dir das Spiel mit zwei gleichartigen Würfeln angeboten hätte, hätten sich die Wahrscheinlichkeiten deshalb geändert?
:*Denke nochmal an „Gustavs Glücksspiel“. Wenn er dir das Spiel mit zwei gleichartigen Würfeln angeboten hätte, hätten sich die Wahrscheinlichkeiten deshalb geändert?

Version vom 30. April 2015, 06:34 Uhr

Das „Drei-Würfel-Problem“

Vorlage:Kasten Mathematik


Vorlage:Aufgaben-M

Versuche die Aufgabe zuerst ohne Hilfen zu lösen!

Vielleicht kann dir diese Urnensimulation weiterhelfen:

Vorlage:Rechtsklick Fenster Urnensimulation öffnen


Lösungshilfen: Vorlage:Versteckt


  • Die angegebenen Ergebnisse von Chevalier de Méré sind nicht gleichwahrscheinlich! Also kann er gar nicht die Laplace-Wahrscheinlichkeiten der Ereignisse „Augensumme 11“ und „Augensumme 12“ mit der Behauptung der Gleichwahrscheinlichkeit berechnen.
  • Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich nicht geändert, nur weil die Würfel gleichfarbig gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.
  • Hätte sich denn die Wahrscheinlichkeit in Aufgabe 1.8 einen Pasch zu würfeln geändert wenn die Würfel gleichfarbig gewesen wären? Natürlich nicht...


Vorlage:Aufgaben-M



Vorlage:Aufgaben-M

  • Für Ergebnisse mit drei verschiedenen Augenzahlen müssen wir nicht nur eines beachten, sondern sechs verschiedene (Zählprinzip).
Beispiel:
  • Für Ergebnisse mit zwei verschiedenen Augenzahlen müssen wir drei verschiedene Ergebnisse beachten.
  • Für Ergebnisse wie  gibt es nur ein Ergebnis.
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \Rightarrow \quad \left|E_1\right|= 6\ +\ 6\ +\ 6\ +\ 3\ +\ 3\ +\ 3=27 \quad \Rightarrow \quad p(E_1)= \frac{27}{216}=12{,}5\ %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \Rightarrow \quad \left|E_2\right|= 6\ +\ 6\ +\ 6\ +\ 3\ +\ 3\ +\ 1=25 \quad \Rightarrow \quad p(E_2)= \frac{25}{216}\approx11{,}6\ %}


Vorlage:Schrift orange




Vorlage:Kasten Mathematik