Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Drei-Würfel-Problem: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Florian Bogner
(→‎Das „Drei-Würfel-Problem“: zusätzliche Erklärung)
Main>Florian Bogner
K (Rechtschreibung)
Zeile 48: Zeile 48:
:*Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich nicht geändert, nur weil die Würfel gleichfarbig gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.
:*Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich nicht geändert, nur weil die Würfel gleichfarbig gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.


:*Hätte sich denn die Wahrsccheinlichkeit in Aufgabe 1.8 einen Pasch zu würfeln geändert wenn die Würfel gleichfarbig gewesen wären? Natürlich nicht...
:*Hätte sich denn die Wahrscheinlichkeit in Aufgabe 1.8 einen Pasch zu würfeln geändert wenn die Würfel gleichfarbig gewesen wären? Natürlich nicht...
}}
}}



Version vom 25. April 2010, 10:56 Uhr

Das „Drei-Würfel-Problem“

Vorlage:Kasten Mathematik


Vorlage:Aufgaben-M

Versuche die Aufgabe zuerst ohne Hilfen zu lösen!

Vielleicht kann dir diese Urnensimulation weiterhelfen:

Vorlage:Rechtsklick Fenster Urnensimulation öffnen


Lösungshilfen: Vorlage:Versteckt


  • Die angegebenen Ergebnisse von Chevalier de Méré sind nicht gleichwahrscheinlich! Also kann er gar nicht die Laplace-Wahrscheinlichkeiten der Ereignisse „Augensumme 11“ und „Augensumme 12“ mit der Behauptung der Gleichwahrscheinlichkeit berechnen.
  • Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich nicht geändert, nur weil die Würfel gleichfarbig gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.
  • Hätte sich denn die Wahrscheinlichkeit in Aufgabe 1.8 einen Pasch zu würfeln geändert wenn die Würfel gleichfarbig gewesen wären? Natürlich nicht...


Vorlage:Aufgaben-M



Vorlage:Aufgaben-M

  • Für Ergebnisse mit drei verschiedenen Augenzahlen müssen wir nicht nur eines beachten, sondern sechs verschiedene (Zählprinzip).
Beispiel:
  • Für Ergebnisse mit zwei verschiedenen Augenzahlen müssen wir drei verschieden Ergebnisse beachten.
  • Für Ergebnisse wie  gibt es nur ein Ergebnis.
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \Rightarrow \quad \left|E_1\right|= 6\ +\ 6\ +\ 6\ +\ 3\ +\ 3\ +\ 3=27 \quad \Rightarrow \quad p(E_1)= \frac{27}{216}=12{,}5\ %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \Rightarrow \quad \left|E_2\right|= 6\ +\ 6\ +\ 6\ +\ 3\ +\ 3\ +\ 1=25 \quad \Rightarrow \quad p(E_2)= \frac{25}{216}\approx11{,}6\ %}


Vorlage:Schrift orange




Vorlage:Kasten Mathematik