Das Lot: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Petra Bader
KKeine Bearbeitungszusammenfassung
Main>Petra Bader
Keine Bearbeitungszusammenfassung
Zeile 13: Zeile 13:
<br>
<br>
<br>
<br>
'''<u>Aufgabe:</u>'''
'''<u>Aufgaben:</u>'''
# Zeichne auf einem karierten Blatt eine Strecke [AB] mit <math> \overline{AB} = 6 cm</math>.
# Zeichne auf einem karierten Blatt eine Strecke [AB] mit <math> \overline{AB} = 6 cm</math>.
# Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke <u>'''''nicht'''''</u> halbiert und konstruiere eine senkrechte Gerade l auf die Strecke [AB], die durch den Punkt P verläuft! Diese Gerade nennt man '''Lot'''.
# Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke <u>'''''nicht'''''</u> halbiert und konstruiere eine senkrechte Gerade l auf die Strecke [AB], die durch den Punkt P verläuft! Diese Gerade nennt man '''Lot'''.
# Formuliere die einzelnen Konstruktionsschritte schriftlich unter Deine Konstruktion! Besprich diese mit Deinem Nachbarn!
# Formuliere die einzelnen Konstruktionsschritte schriftlich unter Deine Konstruktion! Besprich diese mit Deinem Nachbarn!
# Überprüfe Deine Konstruktionsschritte mit Hilfe folgender '''[http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/grundkonstruktionen/loterrichten.html Animation]'''!
# Überprüfe Deine Konstruktionsschritte zum Errichten eines Lotes anhand folgender '''[http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/grundkonstruktionen/loterrichten.html Animation]'''!




Zeile 38: Zeile 38:
# Übertrage die Definition und die Merkregel vom Lot auf Dein Arbeitsblatt!   
# Übertrage die Definition und die Merkregel vom Lot auf Dein Arbeitsblatt!   
# Konstruiere auf dem Arbeitsblatt im Punkt P auf der Geraden g das Lot l! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!   
# Konstruiere auf dem Arbeitsblatt im Punkt P auf der Geraden g das Lot l! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!   
# Übertrage, die Konstruktionsschritte aus der '''[http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/grundkonstruktionen/loterrichten.html Animation]''' auf Dein Arbeitsblatt!   
# Übertrage, die Konstruktionsschritte zum Errichten eines Lotes aus der '''[http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/grundkonstruktionen/loterrichten.html Animation]''' auf Dein Arbeitsblatt!   
# Welche weiteren Beispiele aus Deiner Alltagswelt für das Lot in einem Punkt kennst Du?   
# Welche weiteren Beispiele aus Deiner Alltagswelt für das Lot in einem Punkt kennst Du?   
<br>       
<br>       
Zeile 63: Zeile 63:
<br>
<br>
'''Welchen "Weg" muss die Angelschnur nehmen, damit Max und Moritz die Hähnchen erangeln können?'''
'''Welchen "Weg" muss die Angelschnur nehmen, damit Max und Moritz die Hähnchen erangeln können?'''
'''<u>Aufgaben:</u>'''
# Zeichne auf einem karierten Blatt eine Strecke [AB] mit <math> \overline{AB} = 6 cm</math>.
# Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke <u>'''''nicht'''''</u> halbiert und konstruiere eine senkrechte Gerade l auf die Strecke [AB], die durch den Punkt P verläuft! Diese Gerade nennt man '''Lot'''.
# Formuliere die einzelnen Konstruktionsschritte schriftlich unter Deine Konstruktion! Besprich diese mit Deinem Nachbarn!
# Überprüfe Deine Konstruktionsschritte zum Fällen eines Lotes anhand  folgender '''[http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/grundkonstruktionen/lotfaellen.html Animation]'''!
=== Konstruktion: Fällen eines Lotes vom Punkt P auf eine Gerade g ===
=== Konstruktion: Fällen eines Lotes vom Punkt P auf eine Gerade g ===
Überlege Dir die einzelnen Konstruktionsschritte um ein Lot von einem Punkt P auf eine Geraden g zu fällen!
Überprüfe Deine Überlegungen mit Deinem/r NachbarIn! <br>Überprüfe Deine Konstruktionsschritte anhand der '''[http://www.hirnwindungen.de/wunderland/grundkons/lot.html Konstruktion]'''!
<br>
<br>
<br>
<br>

Version vom 6. März 2007, 15:28 Uhr

Vorlage:Babel-1

Das Lot

Das Lot errichten

Auf einem ganz bestimmten Punkt

soll er steh'n mit ganz viel Prunk,
der herrlich geschmückte Tannenbaum
in Max und Moritz' schönsten Raum.

Tannenbaum.jpg



Aufgaben:

  1. Zeichne auf einem karierten Blatt eine Strecke [AB] mit .
  2. Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke nicht halbiert und konstruiere eine senkrechte Gerade l auf die Strecke [AB], die durch den Punkt P verläuft! Diese Gerade nennt man Lot.
  3. Formuliere die einzelnen Konstruktionsschritte schriftlich unter Deine Konstruktion! Besprich diese mit Deinem Nachbarn!
  4. Überprüfe Deine Konstruktionsschritte zum Errichten eines Lotes anhand folgender Animation!


Vorlage:Kasten grün
Loterrichten.jpg

Merke:


Gilt P ∈ g, so sagt man auch: Im Punkt P wird das Lot zu g errichtet.



Konstruiere das Lot auf der Geraden g im Punkt P (Arbeitsblatt)


Arbeitsaufträge:

  1. Übertrage die Definition und die Merkregel vom Lot auf Dein Arbeitsblatt!
  2. Konstruiere auf dem Arbeitsblatt im Punkt P auf der Geraden g das Lot l! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  3. Übertrage, die Konstruktionsschritte zum Errichten eines Lotes aus der Animation auf Dein Arbeitsblatt!
  4. Welche weiteren Beispiele aus Deiner Alltagswelt für das Lot in einem Punkt kennst Du?



Das Lot fällen

Maxhähnchen.jpgDurch den Schornstein mit Vergnügen

Sehen sie die Hühner liegen,
Die schon ohne Kopf und Gurgeln
Lieblich in der Pfanne schmurgeln.

Max und Moritz auf dem Dache
sind jetzt tätig bei der Sache.
Max hat schon mit Vorbedacht
Eine Angel mitgebracht.

Schnupdiwup! Da wird nach oben
Schon ein Huhn heraufgehoben.
Schnupdiwup! jetzt Numro zwei;
Schnupdiwup! jetzt Numro drei;
Und jetzt kommt noch Numro vier:

Schnupdiwup! Dich haben wir!




Welchen "Weg" muss die Angelschnur nehmen, damit Max und Moritz die Hähnchen erangeln können? Aufgaben:

  1. Zeichne auf einem karierten Blatt eine Strecke [AB] mit .
  2. Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke nicht halbiert und konstruiere eine senkrechte Gerade l auf die Strecke [AB], die durch den Punkt P verläuft! Diese Gerade nennt man Lot.
  3. Formuliere die einzelnen Konstruktionsschritte schriftlich unter Deine Konstruktion! Besprich diese mit Deinem Nachbarn!
  4. Überprüfe Deine Konstruktionsschritte zum Fällen eines Lotes anhand folgender Animation!

Konstruktion: Fällen eines Lotes vom Punkt P auf eine Gerade g



Merke: Gilt P ∉ g, so sagt man auch: Im Punkt P wird das Lot auf g gefällt.

Arbeitsaufträge:

  1. Konstruiere auf dem Arbeitsblatt vom Punkt P das Lot l auf die Geraden g! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  2. Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
  3. Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?



Konstruieren mit GeoGebra:

  1. Speichere folgende Geogebra.svg Datei in Deinem Ordner ab!
  2. Fälle das Lot vom Punkt P auf die Gerade g! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!
  3. Speichere die erstellte Konstruktion unter "Haenchen_<<DeinName_Haus>>" im Klassenverzeichnis ab!



Für besonders flinke Schüler: Formuliere eine Aufgabe und konstruiere

1. Betrachte das nebenstehende Bild und überlege Dir eine Aufgabenstellung, in der man ein Lot konstruieren muss. Beginne beispielsweise mit:
Max und Moritz stets bereit
gerade in der heißen Sommerzeit...
2. Öffne die Geogebra.svg Geogebra-Datei und löse Deine erdachte Aufgabe durch Konstruktion des Lotes!
Boote.jpg



Vertiefung und Wiederholung



Hausaufgabe: S. 18 Nr 6 Welches Buch? Titel


Lernpfad


Lernpfad


Lernpfad
3. Streich: Das Lot




Vorlage:Kasten blau