Winkelhalbierende, Mittelsenkrechte, Lot: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Petra Bader
Keine Bearbeitungszusammenfassung
Main>Petra Bader
Keine Bearbeitungszusammenfassung
Zeile 18: Zeile 18:
}}
}}
<br>
<br>
= Die Mittelsenkrechte =
<table>
<tr><td>
[[bild:sägen.jpg|170px]]</td>
<td>''In der schönen Maienzeit,''<br>
''wenn die bayerischen Dorfesleut''<br>
''viele große Stämme krachen''<br>
''schmücken und zurechte machen,''<br>
''wünschen Max und Moritz auch''<br>
''sich einen Maibaum zum Gebrauch.''<br>
''Max und Moritz, gar nicht träge,''<br>
''Sägen heimlich mit der Säge,''<br>
''Ritzeratze! voller Tücke,''<br>
''In die Birke eine Lücke.''<br>
''Max und Moritz heimlich geh'n''<br>
''wo der Maibaum nun soll steh'n''<br>
''Dieser wird nun aufgestellt''<br>
''wo es allen Leut' gefällt,''<br>
''wo die Katzen oft 'rumschleichen''<br>
''mittig zwischen den zwei Eichen''</td><td><br>[[Bild:eichen.jpg|350px|right]]</td>
</tr></table>
'''Welche besondere Eigenschaften besitzt der Maibaum?'''
<br><br><br>
'''<u>Aufgabe - Teil 1:'''</u>
# Überlege zunächst, welche besonderen Eigenschaften der Maibaum von Max und Moritz besitzen muss.
# Betrachte nun folgende Strecke [AB] und verschiebe die Punkte A und B
# Welche besonderen Eigenschaften besitzt die rote Gerade? Überlege wie man aufgrund dieser Eigenschaft die Gerade konstruieren kann! Begründe, warum die rote Gerade '''Mittelsenkrechte''' heißt!<br>
<br>
==Was ist eine Mittelsenkrechte?==
'''<u>Definition der Mittelsenkrechten</u>'''
Eine Gerade heißt '''Mittelsenkrechte''' '''auf eine Strecke [AB]''', wenn sie durch den '''Mittelpunkt'''
der Strecke verläuft (die Strecke halbiert) und '''auf ihr senkrecht''' steht.
Sie wird mit '''m[AB]''' bezeichnet.
Die Mittelsenkrechte auf eine Strecke ist eine '''Symmetrieachse''' dieser Strecke.
<br>
<br>
== Konstruktion der Mittelsenkrechten ==
'''<u>Aufgabe - Teil 2:'''</u>
# Öffne mit dem Programm GeoGebra die '''{{Ggb|Eiche.ggb|GeoGebra-Datei}}''' mit zwei Eichen, am Punkt A und am Punkt B.
# Konstruiere die Mittelsenkrechte auf die Strecke [AB], die beide Eichen miteinander verbindet!
# Speichere die Datei unter dem Namen "Mittelsenkrechte_<<DeinName>>" im Klassenverzeichnis auf der Festplatte ab!
# Überprüfe Deine Konstruktionsschritte anhand folgender '''[http://www.hirnwindungen.de/wunderland/grundkons/mittelsenk.html Konstruktion]'''!
# Formuliere die einzelnen Konstruktionsschritte schriftlich auf einem Übungszettel! Überprüfe die Konstruktionsschritte mit Deinem Nachbarn!
<br>
<br>
'''<u>Aufgabe - Teil 3:'''</u>
# Übertrage die Definition der Mittelsenkrechten auf Dein Arbeitsblatt!
# Konstruiere die Mittelsenkrechte und formuliere die Konstruktionsschritte!
# Überlege weitere Beispiele in der Natur, wo eine Mittelsenkrechte vorkommt!
<br>
<br>'''Weiteres Anwendungsbeispiel:'''<br>
Gehe auf folgende '''[http://did.mat.uni-bayreuth.de/mmlu/dreieck/lu/za/ms/ms1.htm Internetseite]'''. Lies Dir den dabeistehenden Text sorgfältig durch und überlege!
<br><br>
:::::'''''Dies nun war der zweite Streich und der letzte folgt zugleich!'''''
<br><br>
== Puzzle zur Mittelsenkrechten ==
'''[http://inmare.cspsx.de/Mittelsenkrechte.htm Zuordungspuzzle]''': '''Ordne die jeweiligen "Schatzkarten" den Beschreibungen zu!'''<br><br>
== Vertiefung und Wiederholung ==


= Das Lot =
= Das Lot =

Version vom 25. Februar 2007, 15:53 Uhr

Vorlage:Babel-1

Lernpfade: Winkelhalbierende, Mittelsenkrechte und Lot

Die nachfolgende Unterrichtssequenz besteht aus drei Lernpfaden zu den Themen Winkelhalbierende, Mittelsenkrechte und Lot. Notwendige Schülermaterialien werden am Anfang des jeweiligen Lernpfades angegeben bzw. zum Download zur Verfügung gestellt.

Meisterlaempel.jpg
Beachte:

Lies Dir die Texte und die Aufgabenstellungen sorgfältig durch!
Besprich Dich bei der Bearbeitung mit Deiner Nachbarin bzw. Deinem Nachbarn!
Befolge Schritt für Schritt die Arbeitsanweisungen!


Lernpfad

1. Streich: Die Winkelhalbierende

Materialien: 1. Pdf20.gif Arbeitsblatt zur Winkelhalbierenden und 2. Tonpapier.png orange-farbenes gleichschenkliges Dreieck (Tonpapier)


Lernpfad


Lernpfad

3. Streich: Das Lot

Material: Pdf20.gif Arbeitsblatt zum Lot



Das Lot

Das Lot errichten

Auf einem ganz bestimmten Punkt
soll er steh'n mit ganz viel Prunk,
der herrlich geschmückte Tannenbaum

in Max und Moritz' schönsten Raum.
Tannenbaum.jpg

Wie wird der Ort, an dem der Tannenbaum aufgestellt werden soll, beschrieben?

Aufgabe:

  1. Nimm ein Blatt Papier zur Hand und zeichne eine 6cm-lange Strecke [AB]!
  2. Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke nicht halbiert!
  3. Überlege: Wie konstruiert man eine senkrechte Gerade, die durch den Punkt P verläuft? Diese senkrechte Gerade wird auch als Lot bezeichnet! Überprüfe Deine Konstruktionsschritte anhand der linken Skizzen!
Loterrichten.jpg
Definition des Lotes:

Eine Senkrechte durch einen Punkt Q zu einer Geraden g nennt man Lot.
Der Schnittpunkt des Lotes l mit g heißt Lotfußpunkt P.



Konstruktion: Errichten eines Lotes auf einer Geraden g im Punkt P

Überlege Dir die einzelnen Konstruktionsschritte um ein Lot im Punkt P auf einer Geraden g zu errichten! Überprüfe Deine Überlegungen mit Deinem/r NachbarIn!

Merke: Gilt P ∈ g, so sagt man auch: Im Punkt P wird das Lot zu g errichtet.

Arbeitsaufträge:

  1. Übertrage die Definition und die Merkregel vom Lot auf Dein Arbeitsblatt!
  2. Konstruiere auf dem Arbeitsblatt im Punkt P auf der Geraden g das Lot l! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  3. Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
  4. Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?



Das Lot fällen

Maxhähnchen.jpgDurch den Schornstein mit Vergnügen

Sehen sie die Hühner liegen,
Die schon ohne Kopf und Gurgeln
Lieblich in der Pfanne schmurgeln.

Max und Moritz auf dem Dache
sind jetzt tätig bei der Sache.
Max hat schon mit Vorbedacht
Eine Angel mitgebracht.

Schnupdiwup! Da wird nach oben
Schon ein Huhn heraufgehoben.
Schnupdiwup! jetzt Numro zwei;
Schnupdiwup! jetzt Numro drei;
Und jetzt kommt noch Numro vier:

Schnupdiwup! Dich haben wir!




Welchen "Weg" muss die Angelschnur nehmen, damit Max und Moritz die Hähnchen erangeln können?

Konstruktion: Fällen eines Lotes vom Punkt P auf eine Gerade g

Überlege Dir die einzelnen Konstruktionsschritte um ein Lot von einem Punkt P auf eine Geraden g zu fällen! Überprüfe Deine Überlegungen mit Deinem/r NachbarIn!
Überprüfe Deine Konstruktionsschritte anhand der rechten Skizzen!

Merke: Gilt P ∉ g, so sagt man auch: Im Punkt P wird das Lot auf g gefällt.

Arbeitsaufträge:

  1. Konstruiere auf dem Arbeitsblatt vom Punkt P das Lot l auf die Geraden g! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  2. Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
  3. Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?



Konstruieren mit GeoGebra:

  1. Speichere folgende Geogebra.svg Datei in Deinem Ordner ab!
  2. Fälle das Lot vom Punkt P auf die Gerade g! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!
  3. Speichere die erstellte Konstruktion unter "Lotfaellen_<<DeinName_Haus>>" im Klassenverzeichnis ab!



Rätsel zum Lot



Vertiefung und Wiederholung



Hausaufgabe: S. 18 Nr 6 Welches Buch? Titel



Petra Bader 26. Oktober 2006 (METDST)