Einführung in quadratische Funktionen/Übungen 3: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 49: Zeile 49:
'''Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der x-Achse symmetrisch zueinander sind?'''  (7x<sup>2</sup> und -7x<sup>2</sup>) (!7x<sup>2</sup> - 2x und 7x<sup>2</sup> + 2x) (!7x<sup>2</sup> - 2 und 7x<sup>2</sup> + 2) (7x<sup>2</sup> - 2 und -7x<sup>2</sup> + 2) (!7x<sup>2</sup> - 2 und -7x<sup>2</sup> + 2x)  
'''Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der x-Achse symmetrisch zueinander sind?'''  (7x<sup>2</sup> und -7x<sup>2</sup>) (!7x<sup>2</sup> - 2x und 7x<sup>2</sup> + 2x) (!7x<sup>2</sup> - 2 und 7x<sup>2</sup> + 2) (7x<sup>2</sup> - 2 und -7x<sup>2</sup> + 2) (!7x<sup>2</sup> - 2 und -7x<sup>2</sup> + 2x)  
</div>
</div>




Zeile 57: Zeile 55:
Finde die richtigen Paare - je ein Funktionsterm und ein Funktionsgraph gehören zusammen. Achte auf die wesentlichen Eigenschaften der Funktion (Öffnung der Parabel, Lage des Scheitels, Nullstellen).
Finde die richtigen Paare - je ein Funktionsterm und ein Funktionsgraph gehören zusammen. Achte auf die wesentlichen Eigenschaften der Funktion (Öffnung der Parabel, Lage des Scheitels, Nullstellen).


:::{|border="0" cellspacing="0" cellpadding="4"
|align = "left" width="600"|
<div class="memo-quiz">
<div class="memo-quiz">


Zeile 81: Zeile 77:


</div>
</div>
|}





Version vom 9. Juni 2018, 15:10 Uhr

Funktionsterm finden

Die Parabel hat die Funktionsgleichung

f(x) = ax2 + bx + c.

Welcher Funktionsterm passt?

(-0,5x2 + 2x - 1) (!0,5x2 - 2x + 3) (!-2x2 + 8x - 7) (!-0,5x2 + 2x + 1) (!0,5x2 - 2x - 1)

Üb3 Parabel 5.jpg


Term und Graph zuordnen

Ordne den Funktionsgraphen den richtigen Term zu.

Üb3 Parabel 1.jpg Üb3 Parabel 3.jpg Üb3 Gerade 1.jpg Üb3 Parabel 4.jpg Üb3 Gerade 2.jpg Üb3 Parabel 2.jpg
x2 + 3 -x2 + 3 -x + 3 -x2 - 3 x - 3 x2 - 3


Kreuze jeweils alle richtigen Aussagen an

f(x) = –2x2 + 3x – 4 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-6] liegt auf dem Graphen.) (Der Punkt [1|1] liegt nicht auf dem Graphen.)


Welche Terme gehören zu einer Funktion, deren Graph symmetrisch zur y-Achse ist? (7x2) (7x2 - 2) (7x2 + 3) (!7x2 - 2x) (!7x2 + 3x) (!7x2 - 2x + 3)


Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der y-Achse symmetrisch zueinander sind? (!7x2 und -7x2) (7x2 - 2x und 7x2 + 2x) (!7x2 - 2x und -7x2 + 2x) (!7x2 - 2 und 7x2 + 2) (-7x2 + 2x und -7x2 - 2x)


Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der x-Achse symmetrisch zueinander sind? (7x2 und -7x2) (!7x2 - 2x und 7x2 + 2x) (!7x2 - 2 und 7x2 + 2) (7x2 - 2 und -7x2 + 2) (!7x2 - 2 und -7x2 + 2x)


Memo-Quiz

Finde die richtigen Paare - je ein Funktionsterm und ein Funktionsgraph gehören zusammen. Achte auf die wesentlichen Eigenschaften der Funktion (Öffnung der Parabel, Lage des Scheitels, Nullstellen).

f(x) = x2 + 3 Üb3 Parabel 1a.jpg
f(x) = -x2 + 3 Üb3 Parabel 3a.jpg
f(x) = 3x2 Parabel a 3a.jpg
f(x) = 0,2x2 Parabel a 0 2a.jpg
f(x) = x2 + 2x Üb3 Parabel 6.jpg
f(x) = –x2 + 2x Üb3 Parabel 7.jpg
f(x) = x2 – 2x – 3 Üb3 Parabel 8.jpg
f(x) = –x2 – 2x + 3 Üb3 Parabel 9.jpg


*Zusatz: Weitere interaktive Übungen



Weiterführende Links

Vorlage:Quadratische Funktionen