Einführung in quadratische Funktionen/Übungen 1: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
__NOCACHE__ | __NOCACHE__ | ||
__NOTOC__ | __NOTOC__ | ||
{| | {| | ||
Zeile 52: | Zeile 50: | ||
<big>'''Aufgabe 2: Lückentext ''' </big> | <big>'''Aufgabe 2: Lückentext ''' </big> | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Der Graph der Funktion f mit f(x)=ax² heißt <strong> Parabel </strong>. Ist a = 1, so heißt der Graph <strong> Normalparabel</strong>.<br> | Der Graph der Funktion f mit f(x)=ax² heißt <strong> Parabel </strong>. Ist a = 1, so heißt der Graph <strong> Normalparabel</strong>.<br> | ||
Zeile 63: | Zeile 59: | ||
Für a>0 gilt: Je kleiner a ist, desto <strong> weiter </strong> ist die Parabel. | Für a>0 gilt: Je kleiner a ist, desto <strong> weiter </strong> ist die Parabel. | ||
</div> | </div> | ||
<big>'''Aufgabe 3: Bestimme a'''</big> | <big>'''Aufgabe 3: Bestimme a'''</big> | ||
Die beiden Parabeln haben die Funktionsgleichung '''f(x) = ax<sup>2</sup>'''. | Die beiden Parabeln haben die Funktionsgleichung '''f(x) = ax<sup>2</sup>'''. | ||
Finde jeweils heraus, welchen Wert a besitzt und erkläre wie du vorgegangen bist. | Finde jeweils heraus, welchen Wert a besitzt und erkläre wie du vorgegangen bist. | ||
<div class="grid"> | |||
<div class="width-1-2"> | |||
[[Bild:Üb1_Parabel1.jpg|395px]] | [[Bild:Üb1_Parabel1.jpg|395px]] | ||
Zeile 88: | Zeile 78: | ||
}} | }} | ||
</div> | |||
<div class="width-1-2"> | |||
[[Bild:Üb1_Parabel2.jpg|395px]] | [[Bild:Üb1_Parabel2.jpg|395px]] | ||
Zeile 97: | Zeile 87: | ||
#Damit ist a = - 3. | #Damit ist a = - 3. | ||
}} | }} | ||
</div> | </div> | ||
</div> | |||
<big>'''Aufgabe 4: Term und Graph zuordnen'''</big> | <big>'''Aufgabe 4: Term und Graph zuordnen'''</big> | ||
Ordne den Funktionsgraphen den richtigen Term zu. | Ordne den Funktionsgraphen den richtigen Term zu. | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Zeile 117: | Zeile 101: | ||
| <strong> 0,5x<sup>2</sup> </strong> || <strong> 2x<sup>2</sup> </strong> || <strong> 3x<sup>2</sup> </strong> || <strong> 0,75x<sup>2</sup> </strong> || <strong> 1,25x<sup>2</sup> </strong> || <strong> 0,2x<sup>2</sup> </strong> | | <strong> 0,5x<sup>2</sup> </strong> || <strong> 2x<sup>2</sup> </strong> || <strong> 3x<sup>2</sup> </strong> || <strong> 0,75x<sup>2</sup> </strong> || <strong> 1,25x<sup>2</sup> </strong> || <strong> 0,2x<sup>2</sup> </strong> | ||
|} | |} | ||
</div> | </div> | ||
</div> | </div> | ||
Zeile 139: | Zeile 122: | ||
</div> | </div> | ||
{|border="0" cellspacing="0" cellpadding="4" | {|border="0" cellspacing="0" cellpadding="4" | ||
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]] | |align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]] | ||
|align = "left"|'''Als nächstes beschäftigst du dich mit dem Anhalteweg.'''<br /> | |align = "left"|'''Als nächstes beschäftigst du dich mit dem Anhalteweg.'''<br /> | ||
[[Bild:Pfeil 2.gif]] [[Mathematik-digital/Einführung in quadratische Funktionen/Anhalteweg|'''Hier geht es weiter''']]'''.''' | [[Bild:Pfeil 2.gif]] [[Mathematik-digital/Einführung in quadratische Funktionen/Anhalteweg|'''Hier geht es weiter''']]'''.''' | ||
|} | |} | ||
{{Quadratische Funktionen}} | {{Quadratische Funktionen}} |
Version vom 9. Juni 2018, 12:36 Uhr
Die zulässige Höchstgeschwindigkeit beträgt innerhalb geschlossener Ortschaften 50 km/h. Unter idealen Bedingungen sollte ein Pkw in einer Gefahrensituation rechtzeitig vor Erreichen der Gefahrenstelle bremsen können. Der Wert der Bremsbeschleunigung aB und damit die Länge des Bremsweges ist aber u.a. abhängig von den Straßenverhältnissen. In der Tabelle sind einige Werte für die Bremsbeschleunigung eines Pkws auf einer asphaltierten Straße bei unterschiedlichen Witterungsverhältnissen angegeben.
Ordne dem gegebenen Bremsweg s die passende Bremsbeschleunigung aB und die Straßenverhältnisse zu. Tipp: Du kannst die Übung durch Rechnen, mit Hilfe eines GeoGebra-Applets oder durch Nachdenken lösen. |
|
s = 13 m | aB = 7,4 m/s2 | trockener Asphalt |
s = 18 m | aB = 5,4 m/s2 | nasser Asphalt |
s = 80 m | aB = 1,2 m/s2 | Glatteis |
s = 37 m | aB = 2,6 m/s2 | Neuschnee |
Aufgabe 2: Lückentext
Der Graph der Funktion f mit f(x)=ax² heißt Parabel . Ist a = 1, so heißt der Graph Normalparabel.
Quadratische Funktionen mit dem Funktionsterm ax² liegen symmetrisch zur y-Achse.
Der Punkt S (0;0) heißt Scheitel .
Für a>0 gilt: Je größer a ist, desto steiler ist die Parabel.
Für a>0 gilt: Je kleiner a ist, desto weiter ist die Parabel.
Aufgabe 3: Bestimme a
Die beiden Parabeln haben die Funktionsgleichung f(x) = ax2.
Finde jeweils heraus, welchen Wert a besitzt und erkläre wie du vorgegangen bist.
Aufgabe 4: Term und Graph zuordnen Ordne den Funktionsgraphen den richtigen Term zu.
Aufgabe 5: Multiple Choice
Kreuze die zutreffenden Aussagen an. Es sind jeweils mehrere Antworten richtig.
f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)
f(x) = - 0,5x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-2] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)
f(x) = - 2x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt oberhalb des Graphen.)
f(x) = 0,2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)
Als nächstes beschäftigst du dich mit dem Anhalteweg. |