Einführung in quadratische Funktionen/Übungen 3: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karl Kirst
K (hat „Quadratische Funktionen/ Übungen 3“ nach „Quadratische Funktionen/ Übungen3“ verschoben und dabei eine Weiterleitung überschrieben: zurück verschieben)
Main>Karl Kirst

Version vom 4. Januar 2011, 11:43 Uhr

Vorlage:Quadratische Funktionen


Falls es Probleme mit der Ansicht gibt, bitte Firefox als Browser verwenden!

Aufgabe 1: Funktionsterm finden

Die Parabel hat die Funktionsgleichung

f(x) = ax2 + bx + c.

Welcher Funktionsterm passt?

(-0,5x2 + 2x - 1) (!0,5x2 - 2x + 3) (!-2x2 + 8x - 7) (!-0,5x2 + 2x + 1) (!0,5x2 - 2x - 1)

Üb3 Parabel 5.jpg



Aufgabe 2: Term und Graph zuordnen

Ordne den Funktionsgraphen den richtigen Term zu.

Üb3 Parabel 1.jpg Üb3 Parabel 3.jpg Üb3 Gerade 1.jpg Üb3 Parabel 4.jpg Üb3 Gerade 2.jpg Üb3 Parabel 2.jpg
x2 + 3 -x2 + 3 -x + 3 -x2 - 3 x - 3 x2 - 3



Aufgabe 3: Multiple Choice

Kreuze jeweils alle richtigen Aussagen an.

f(x) = –2x2 + 3x – 4 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-6] liegt auf dem Graphen.) (Der Punkt [1|1] liegt nicht auf dem Graphen.)


Welche Terme gehören zu einer Funktion, deren Graph symmetrisch zur y-Achse ist? (7x2) (7x2 - 2) (7x2 + 3) (!7x2 - 2x) (!7x2 + 3x) (!7x2 - 2x + 3)


Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der y-Achse symmetrisch zueinander sind? (!7x2 und -7x2) (7x2 - 2x und 7x2 + 2x) (!7x2 - 2x und -7x2 + 2x) (!7x2 - 2 und 7x2 + 2) (-7x2 + 2x und -7x2 - 2x)


Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der x-Achse symmetrisch zueinander sind? (7x2 und -7x2) (!7x2 - 2x und 7x2 + 2x) (!7x2 - 2 und 7x2 + 2) (7x2 - 2 und -7x2 + 2) (!7x2 - 2 und -7x2 + 2x)



Aufgabe 4: Memo-Quiz

Finde die richtigen Paare - je ein Funktionsterm und ein Funktionsgraph gehören zusammen. Achte auf die wesentlichen Eigenschaften der Funktion (Öffnung der Parabel, Lage des Scheitels, Nullstellen).

f(x) = x2 + 3 Üb3 Parabel 1a.jpg
f(x) = -x2 + 3 Üb3 Parabel 3a.jpg
f(x) = 3x2 Parabel a 3a.jpg
f(x) = 0,2x2 Parabel a 0 2a.jpg
f(x) = x2 + 2x Üb3 Parabel 6.jpg
f(x) = –x2 + 2x Üb3 Parabel 7.jpg
f(x) = x2 – 2x – 3 Üb3 Parabel 8.jpg
f(x) = –x2 – 2x + 3 Üb3 Parabel 9.jpg



*Zusatz: Weitere interaktive Übungen



Weiterführende Links

Videoanalyse: Geschwindigkeit und Bremswege von Wolfgang Riemer