Quadratische Funktionen erkunden/Die Scheitelpunktform: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Carsten
Keine Bearbeitungszusammenfassung
Main>Carsten
Keine Bearbeitungszusammenfassung
Zeile 66: Zeile 66:
{{Aufgaben|4|'''Für diese Aufgabe benötigst du dein Arbeitsheft und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
{{Aufgaben|4|'''Für diese Aufgabe benötigst du dein Arbeitsheft und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


'''a)''' Überlege dir - ohne deinem Partner es zu verraten - eine Sportart, bei der die Flugkurve eines Balls (oder eines ähnlichen Sportutensils) durch eine quadratische Funktion näherungsweise modelliert werden kann. Notiere den Term in deinem Arbeitsheft. Zur Visualisierung kannst du das untenstehende GeoGebra-Applet nutzen.
'''a)''' Überlege dir - ohne deinem Partner es zu verraten - eine Sportart, bei der die Flugkurve eines Balls (oder eines ähnlichen Sportutensils) durch eine quadratische Funktion näherungsweise modelliert werden kann. Notiere den Term (sowie die Maßeinheit) in deinem Arbeitsheft. Zur Visualisierung kannst du das untenstehende GeoGebra-Applet nutzen.


<popup name="Hilfe - Strategie"> Der folgende vierschrittige Lösungsplan kann dir helfen zu einer guten Funktion zu gelangen.<br />
<popup name="Hilfe - Strategie"> Der folgende vierschrittige Lösungsplan kann dir helfen zu einer guten Funktion zu gelangen.<br />
Zeile 82: Zeile 82:
<iframe scrolling="no" src="https://www.geogebra.org/m/RCgFCGP9" width="900px" height="700px" style="border:0px;"> </iframe>  
<iframe scrolling="no" src="https://www.geogebra.org/m/RCgFCGP9" width="900px" height="700px" style="border:0px;"> </iframe>  


Zur Abrundung deiner Arbeit mit dem Lernpfad findest du eine Abschlussreflexion auf deinem AB.
Zur Abrundung deiner Arbeit mit dem Lernpfad findest du eine Abschlussreflexion in deinem Arbeitsheft.


'''
'''
--[[Benutzer:Carsten|Carsten]] ([[Benutzer Diskussion:Carsten|Diskussion]]) 15:24, 5. Nov. 2016 (CET)
--[[Benutzer:Carsten|Carsten]] ([[Benutzer Diskussion:Carsten|Diskussion]]) 15:24, 5. Nov. 2016 (CET)

Version vom 28. November 2016, 20:44 Uhr

Achtung Baustelle! An diesem Teil des Lernpfads wird derzeit gearbeitet.

Herzlich Willkommen zum Lernpfad "Quadratische Funktionen erkunden - die Scheitelpunktform"!

In diesem Kapitel des Lernpfads wirst du Experte für die Scheitelpunktform quadratischer Funktionen. Du kannst
1. selbstständig mithilfe der vorliegenden Applets reale Flugkurven, Gebäude oder Phänomene aus der Natur modellieren,
2. in einem Zuordnungsquiz selbst überprüfen, ob du alles verstanden hast, und
3. abschließend in Partnerarbeit Flugkurven in verschiedenen Sportarten untersuchen.

Bei einigen Aufgaben und Übungen benötigst du das Arbeitsheft. Viel Erfolg!

Aufgabe 1

Für diese Aufgabe benötigst du dein Arbeitsheft Notizblock mit Bleistift.

a) Finde Werte für a, d und e, sodass f(x) die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Arbeitsheft. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.

b) Vergleiche deine Terme mithilfe der Lösungsvorschläge und beantworte anschließend die Reflexionsfragen in deinem Arbeitsheft.


<popup name="Lösungsvorschläge"> Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.

Hintergrundbild Lösungsvorschlag Parameter a Parameter d Parameter e
Angry Birds -0,15 ≤ a ≤ -0,13 6,8 ≤ d ≤ 7,2 4.7 ≤ e ≤ 5
Golden Gate Bridge 0,03 ≤ a ≤ 0,05 5 ≤ d ≤ 6,4 0,8 ≤ e ≤ 1,1
Springbrunnen -0.4 ≤ a ≤ -0.3 4,7 ≤ d ≤ 5 5,1 ≤ e ≤ 5,5
Elbphilharmonie 0.3 ≤ a ≤ 0.36 5,7 ≤ d ≤ 6 3,2 ≤ e ≤ 3,6
Gebirgsformation -0.3 ≤ a ≤ -0.1 5,1 ≤ d ≤ 5,7 2,1 ≤ e ≤ 2,5
Motorrad-Stunt -0.1 ≤ a ≤ -0.04 7,3 ≤ d ≤ 8,1 5,7 ≤ e ≤ 6,2
Basketball -0.35 ≤ a ≤ -0.29 6,2 ≤ d ≤ 6,8 6,2 ≤ e ≤ 6,7


.</popup>


Merke
Funktionen, die mithilfe der Funktionsgleichung (mit a ≠ 0) beschrieben werden können, heißen quadratische Funktionen. Diese Darstellungsform nennt man Scheitelpunktform, da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten . Außerdem gibt es noch die Normalform


Aufgabe 2

Für diese Aufgabe benötigst du dein Arbeitsheft Notizblock mit Bleistift.

a) Lies den Infotext Merke und denke dir anschließend ein Beispiel einer quadratischen Funktion in Scheitelpunktform aus. Notiere den Term und fertige per Hand eine Skizze des Funktionsgraphen im Koordinatensystem in deinem Arbeitsheft an. Zur Kontrolle kannst du das oben stehende GeoGebra-Applet nutzen.



Aufgabe 3

Für diese Aufgabe benötigst du dein Arbeitsheft Notizblock mit Bleistift.

a) Das folgende Quiz beschäftigt sich mit dem Wechsel zwischen verschiedenen Darstellungsarten (Funktionsterm, Graph und Situationen) quadratischer Funktionen. Beantworte die Fragen bitte selbstständig. Es ist jeweils genau eine Antwort richtig. Mit einem Klick in das weiße Kästchen oben rechts erhältst du den Vollbildmodus.


b) Die Lösungsübersicht am Ende verrät dir, wie viel Prozent du erreicht hast. Wenn du dich noch nicht sicher genug im Umgang mit den verschiedenen Darstellungsarten fühlst, kannst du das Quiz gerne erneut durchführen.

Formuliere anschließend einen Merksatz im Arbeitsheft, der beschreibt, auf welche Aspekte man besonders achten sollte.


Aufgabe 4
{{{2}}}


Zur Abrundung deiner Arbeit mit dem Lernpfad findest du eine Abschlussreflexion in deinem Arbeitsheft.

--Carsten (Diskussion) 15:24, 5. Nov. 2016 (CET)