Vera 8 interaktiv/Mathematik/Test C: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
(layout lösung verstecken) |
||
Zeile 60: | Zeile 60: | ||
Stimmt es, dass Fass 2 zuerst überläuft? Schreib auf, wie du zu deiner Entscheidung gekommen bist. | Stimmt es, dass Fass 2 zuerst überläuft? Schreib auf, wie du zu deiner Entscheidung gekommen bist. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
'''Nein''' mit mindestens einer der folgenden Begründungen''' | :{{Lösung versteckt|1= | ||
*'''Wertetabelle''' | :'''Nein''' mit mindestens einer der folgenden Begründungen''' | ||
: ''(kleinere Rechenfehler sind in der Tabelle erlaubt – wichtig ist aber, dass grundsätzlich die eine Spalte jeweils um 20 und die andere um 5 zunimmt)'' | :*'''Wertetabelle''' | ||
*'''oder Berechnung der Zeitpunkte des Überlaufs:''' | :: ''(kleinere Rechenfehler sind in der Tabelle erlaubt – wichtig ist aber, dass grundsätzlich die eine Spalte jeweils um 20 und die andere um 5 zunimmt)'' | ||
:*'''oder Berechnung der Zeitpunkte des Überlaufs:''' | |||
Fass I : 2 x = 100 | Fass I : 2 x = 100 | ||
x = 50 => Fass I läuft nach 50 Min. über. | x = 50 => Fass I läuft nach 50 Min. über. | ||
Fass II: 0,5 x + 60 = 100 | Fass II: 0,5 x + 60 = 100 | ||
x = 80 => Fass II läuft nach 80 Min. über. “ | x = 80 => Fass II läuft nach 80 Min. über. “ | ||
*'''oder graphische Lösung''' | :*'''oder graphische Lösung''' | ||
*'''oder weitere richtige Antworten mit richtiger Begründung''', z.B.: | :*'''oder weitere richtige Antworten mit richtiger Begründung''', z.B.: | ||
:''Fass 2: 40l für 80min und Fass 1 160l für 80min'' | ::''Fass 2: 40l für 80min und Fass 1 160l für 80min'' | ||
}} | }} | ||
Zeile 78: | Zeile 79: | ||
Gibt es einen Zeitpunkt, zu dem das Wasser in beiden Fässern gleich hoch steht? Schreibe auf, wie du zu deiner Antwort kommst. | Gibt es einen Zeitpunkt, zu dem das Wasser in beiden Fässern gleich hoch steht? Schreibe auf, wie du zu deiner Antwort kommst. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
'''Ja und Beschreibung einer korrekten/ angemessenen Vorgehensweise,''': | :{{Lösung versteckt|1= | ||
*'''Ablesen aus zu A1 erstellter Tabelle''', z B.: ''Nach 40 Minuten haben beide Fässer gleichen Stand (siehe 2.1)''. | :'''Ja und Beschreibung einer korrekten/ angemessenen Vorgehensweise,''': | ||
*'''oder neue Berechnung''', z. B.: | :*'''Ablesen aus zu A1 erstellter Tabelle''', z B.: ''Nach 40 Minuten haben beide Fässer gleichen Stand (siehe 2.1)''. | ||
:Nach 30 Min. hat Fass I soviel Wasser, wie Fass II seit Beginn hatte. | :*'''oder neue Berechnung''', z. B.: | ||
:Nach 30 Min. hat Fass II bei 1,5 Min --> 15 l nach 30 Min insgesamt 60 l + 15 l, ergibt 75 l. | ::Nach 30 Min. hat Fass I soviel Wasser, wie Fass II seit Beginn hatte. | ||
::Nach 30 Min. hat Fass II bei 1,5 Min --> 15 l nach 30 Min insgesamt 60 l + 15 l, ergibt 75 l. | |||
Fass I Fass II | Fass I Fass II | ||
30’ 60l 75l | 30’ 60l 75l | ||
Zeile 96: | Zeile 98: | ||
39’ 78 | 39’ 78 | ||
40’ 80 80 | 40’ 80 80 | ||
:Nach 40 Min. haben beide Fässer die gleiche Füllhöhe, nämlich 80l. | ::Nach 40 Min. haben beide Fässer die gleiche Füllhöhe, nämlich 80l. | ||
*'''oder Aufstellen der Funktionsgleichungen für beide Fässer, z. B.: | :*'''oder Aufstellen der Funktionsgleichungen für beide Fässer, z. B.: | ||
#y = Füllmenge und x = Zeit: | :#y = Füllmenge und x = Zeit: | ||
##I y = 2x | :##I y = 2x | ||
##II y = 0,5x + 60 | :##II y = 0,5x + 60 | ||
#Durch Gleichsetzen folgt: | :#Durch Gleichsetzen folgt: | ||
##2x = 0,5x + 60 | :##2x = 0,5x + 60 | ||
##1,5x = 60 | :##1,5x = 60 | ||
##x = 40 | :##x = 40 | ||
##y = 2 *40 = 80 | :##y = 2 *40 = 80 | ||
:Antwort: Nach 40 Min. Gleichstand bei 80 Litern.“ | ::Antwort: Nach 40 Min. Gleichstand bei 80 Litern.“ | ||
*'''oder Ausprobieren,''' z.B. | :*'''oder Ausprobieren,''' z.B. | ||
#„Fass I ist in 30min zu 60% voll, Fass II zu 75% | :#„Fass I ist in 30min zu 60% voll, Fass II zu 75% | ||
#Fass I ist in 40min zu 80% voll, Fass II auch zu 80% | :#Fass I ist in 40min zu 80% voll, Fass II auch zu 80% | ||
#Nach 40 Minuten sind beide gleich voll.“ | :#Nach 40 Minuten sind beide gleich voll.“ | ||
*'''oder inhaltliche Lösung,''' z. B.: | :*'''oder inhaltliche Lösung,''' z. B.: | ||
:''Da Fass 1 leer startet, aber vor Fass 2 überläuft (Aufgabe a) muss die Füllhöhe des Fasses 1 die des Fasses 2 irgendwann „überholen“. Dies ist genau der Zeitpunkt zu dem das Wasser in beiden Fässern gleich hoch ist. | ::''Da Fass 1 leer startet, aber vor Fass 2 überläuft (Aufgabe a) muss die Füllhöhe des Fasses 1 die des Fasses 2 irgendwann „überholen“. Dies ist genau der Zeitpunkt zu dem das Wasser in beiden Fässern gleich hoch ist. | ||
Nach 80 Minuten, weil genau dann beide Fässer voll sind.'' | Nach 80 Minuten, weil genau dann beide Fässer voll sind.'' | ||
* '''oder andere richtige Begründung,''' z.B.: | :* '''oder andere richtige Begründung,''' z.B.: | ||
:''Nach 3 Jahren (oder irgendeinem anderen ausgedachten Zeitraum), weil dann beide Fässer überlaufen''. | ::''Nach 3 Jahren (oder irgendeinem anderen ausgedachten Zeitraum), weil dann beide Fässer überlaufen''. | ||
}} | }} | ||
</div> | </div> | ||
Zeile 128: | Zeile 130: | ||
Wie viel Geld sollte jeder bekommen? Schreibe auf, wie du vorgehst. | Wie viel Geld sollte jeder bekommen? Schreibe auf, wie du vorgehst. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:z.B.: | :z.B.: | ||
*Fritz: 17 - 14 Stunden | :*Fritz: 17 - 14 Stunden | ||
*Hans: 17 - 15 Stunden | :*Hans: 17 - 15 Stunden | ||
*Max: 17 - 15,50 = 1,5 Stunden | :*Max: 17 - 15,50 = 1,5 Stunden | ||
'''Abrechnung pro Stunde ergibt:''' | :'''Abrechnung pro Stunde ergibt:''' | ||
*Fritz: 23,07 € | :*Fritz: 23,07 € | ||
*Hans: 15,38 € | :*Hans: 15,38 € | ||
*Max: 11,54 € | :*Max: 11,54 € | ||
}} | }} | ||
</div> | </div> | ||
Zeile 190: | Zeile 193: | ||
[[Bild:AufgabeB_5 Streichhölzer2.jpg|400px|center]] | [[Bild:AufgabeB_5 Streichhölzer2.jpg|400px|center]] | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:bei 3 Quadraten '''10 Streichhölzer''' und bei 4 Quadraten '''13 Streichhölzer''' | :bei 3 Quadraten '''10 Streichhölzer''' und bei 4 Quadraten '''13 Streichhölzer''' | ||
}} | }} | ||
Zeile 212: | Zeile 216: | ||
Gib eine Gleichung an, die den Zusammenhang zwischen der Anzahl k der Quadrate und der Anzahl s der benötigten Streichhölzer allgemein beschreibt. | Gib eine Gleichung an, die den Zusammenhang zwischen der Anzahl k der Quadrate und der Anzahl s der benötigten Streichhölzer allgemein beschreibt. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:z.B.: s = 3k + 1 | :z.B.: s = 3k + 1 | ||
}} | }} | ||
Zeile 258: | Zeile 263: | ||
Mit Pauls Schultasche ergibt sich in dieser Tischgruppe ein druchschnittliches Gewicht von 4,9 kg. Welches Gewicht hatte Pauls Schultasche? | Mit Pauls Schultasche ergibt sich in dieser Tischgruppe ein druchschnittliches Gewicht von 4,9 kg. Welches Gewicht hatte Pauls Schultasche? | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:5,8 kg | :5,8 kg | ||
}} | }} | ||
Zeile 275: | Zeile 281: | ||
Frau Neukirchen hatte im Jahr 2000 Mobilfunkkosten von 720 Euro. Was hätte sie nach den Angaben aus der Grafik für diese Rechnung in den Jahren 2001 und 2002 bezahlt? Runde jeweils auf ganze Cent! | Frau Neukirchen hatte im Jahr 2000 Mobilfunkkosten von 720 Euro. Was hätte sie nach den Angaben aus der Grafik für diese Rechnung in den Jahren 2001 und 2002 bezahlt? Runde jeweils auf ganze Cent! | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:*2001: 689,04 Euro | :*2001: 689,04 Euro | ||
:*2002: 748,30 Euro ''(ungerundete Ergebnisse werden als Fehler gewertet)'' | :*2002: 748,30 Euro ''(ungerundete Ergebnisse werden als Fehler gewertet)'' | ||
Zeile 303: | Zeile 310: | ||
Wer von beiden hat recht? Begründe deine Entscheidung. | Wer von beiden hat recht? Begründe deine Entscheidung. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:richtige Antworten sind z.B.: | :richtige Antworten sind z.B.: | ||
:*'''Julia hat recht, denn''': Nach der Preiserhöhung 2003 liegt bei der Preissenkungum 1,1% in 2004 ein höherer Grundwert vor als im Jahre 2002 vor der Preiserhöhung um 1,1%. Es wird also mehr gesenkt als vorher angehoben. Demnach waren die Preise in 2004 niedriger als im Jahre 2002.“ | :*'''Julia hat recht, denn''': Nach der Preiserhöhung 2003 liegt bei der Preissenkungum 1,1% in 2004 ein höherer Grundwert vor als im Jahre 2002 vor der Preiserhöhung um 1,1%. Es wird also mehr gesenkt als vorher angehoben. Demnach waren die Preise in 2004 niedriger als im Jahre 2002.“ | ||
Zeile 407: | Zeile 415: | ||
Welcher Tag war der wärmste? Begründe deine Entscheidung mit den Temperaturangaben aus der Tabelle von 24.1. | Welcher Tag war der wärmste? Begründe deine Entscheidung mit den Temperaturangaben aus der Tabelle von 24.1. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt| | |||
*'''Antwort „Mittwoch“ mit angemessener Begründung,''' z.B.: | *'''Antwort „Mittwoch“ mit angemessener Begründung,''' z.B.: | ||
#''Die Durchschnittstemperatur war am Mittwoch am höchsten. (wobei hier das arithmetische Mittel jeden Tages berechnet werden muss oder in einer korrekten Form argumentiert werden muss, dass die Durchschnittstemperatur am Mittwoch am höchsten war – Durchschnittstemperaturen: Mo 18,83 °C… Di 21,83 °C… Mi 22,3 °C… Do 16,3 °C…)'' | #''Die Durchschnittstemperatur war am Mittwoch am höchsten. (wobei hier das arithmetische Mittel jeden Tages berechnet werden muss oder in einer korrekten Form argumentiert werden muss, dass die Durchschnittstemperatur am Mittwoch am höchsten war – Durchschnittstemperaturen: Mo 18,83 °C… Di 21,83 °C… Mi 22,3 °C… Do 16,3 °C…)'' | ||
Zeile 443: | Zeile 452: | ||
Trage in die leeren Kästchen die zugehörigen Zahlen ein. | Trage in die leeren Kästchen die zugehörigen Zahlen ein. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt| | |||
-2,5 1,2 3,5 | -2,5 1,2 3,5 | ||
Zeile 469: | Zeile 479: | ||
Sabine hat die Quersumme einer vierstelligen Zahl berechnet und als Ergebnis 38 erhalten. Nimm zu diesem Ergebnis Stellung. | Sabine hat die Quersumme einer vierstelligen Zahl berechnet und als Ergebnis 38 erhalten. Nimm zu diesem Ergebnis Stellung. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt| | |||
:Sabine hat sich verrechnet. Mögliche Begründungen: | :Sabine hat sich verrechnet. Mögliche Begründungen: | ||
#Die Quersumme einer vierstelligen Zahl ist höchstens 9+9+9+9 = 36. | :#Die Quersumme einer vierstelligen Zahl ist höchstens 9+9+9+9 = 36. | ||
#38 kann nicht sein, da 36 die höchste Quersumme ist. | :#38 kann nicht sein, da 36 die höchste Quersumme ist. | ||
}} | }} | ||
</div> | </div> | ||
Zeile 519: | Zeile 530: | ||
Berechne den durchschnittlichen Benzinverbrauch des Neuwagens auf 100 km. | Berechne den durchschnittlichen Benzinverbrauch des Neuwagens auf 100 km. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
Es werden 7 Liter im Durchschnitt verbraucht. | :{{Lösung versteckt|1= | ||
:Es werden 7 Liter im Durchschnitt verbraucht. | |||
Autobahn Stadt Landstraße | Autobahn Stadt Landstraße | ||
32,4 Liter : 4,5 = 7,2 Liter 19,5 Liter : 2,5 = 7,8 Liter 21 Liter : 3,5 =6 Liter | 32,4 Liter : 4,5 = 7,2 Liter 19,5 Liter : 2,5 = 7,8 Liter 21 Liter : 3,5 =6 Liter | ||
Zeile 535: | Zeile 547: | ||
Begründe, dass die Summe von 4 aufeinanderfolgenden natürlichen Zahlen keine Primzahl sein kann. | Begründe, dass die Summe von 4 aufeinanderfolgenden natürlichen Zahlen keine Primzahl sein kann. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
*'''Algebraischer Ansatz''', z.B.: | *'''Algebraischer Ansatz''', z.B.: | ||
''Wenn n die erste dieser vier Zahlen ist, dann gilt: | ''Wenn n die erste dieser vier Zahlen ist, dann gilt: | ||
Zeile 564: | Zeile 577: | ||
|} | |} | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:2,6 | :2,6 | ||
}} | }} | ||
Zeile 581: | Zeile 595: | ||
| '''Anzahl''' || || || || || || || 3,0 | | '''Anzahl''' || || || || || || || 3,0 | ||
|} | |} | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:Es gibt verschiedene Lösungen, z.B.: | :Es gibt verschiedene Lösungen, z.B.: | ||
:[[Bild:AufgabeC20_Notendurchschnitt.jpg]] | |||
:: | |||
}} | }} | ||
</div> | </div> | ||
Zeile 656: | Zeile 666: | ||
<small>Hinweis: Die Zeichnung ist nicht maßstabsgerecht!</small> | <small>Hinweis: Die Zeichnung ist nicht maßstabsgerecht!</small> | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:'''30<sup>0'''</sup> | :'''30<sup>0'''</sup> | ||
:Begründung z.B.: | :Begründung z.B.: | ||
Zeile 715: | Zeile 726: | ||
[[Bild:AufgabeA32_Spiegelachse.jpg|350px|center]] | [[Bild:AufgabeA32_Spiegelachse.jpg|350px|center]] | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt| | |||
[[Bild:AufgabeA32_Spiegelachse_Lös.jpg|350px|center]] | [[Bild:AufgabeA32_Spiegelachse_Lös.jpg|350px|center]] | ||
}} | }} | ||
Zeile 739: | Zeile 751: | ||
Bestimme die Breite des Flusses mit Hilfe einer Zeichnung. | Bestimme die Breite des Flusses mit Hilfe einer Zeichnung. | ||
<div style="padding: | <div style="padding:1px;background:#ddeeff;border:1px groove;"> | ||
:{{Lösung versteckt|1= | |||
:Die Flussbreite beträgt etwa 35m bis 40m. | :Die Flussbreite beträgt etwa 35m bis 40m. | ||
[[Bild:AufgabeC30_Flussbreite_Lös.jpg|350px|center]] | [[Bild:AufgabeC30_Flussbreite_Lös.jpg|350px|center]] |
Version vom 1. März 2009, 08:56 Uhr
Aufgabe 1.1: Rapido Aus der Preistabelle des Paketdienstes "Rapido" kann man zu jedem Paketgewicht den zugehörigen Preis ablesen:
Beantworte mit Hilfe der Tabelle folgende Frage. Wie viel kostet ein Paket, das 9 kg wiegt? Kreuze die richtige Lösung an. (!5,00 €) (6,00 €) (!9,00 €) (!13,50 €) | |||||||||||||||||||||||||||||||||||
Aufgabe 1.2: Rapido Beantworte mit Hilfe der Tabelle aus 1.1 folgende Frage. Wie schwer darf ein Paket sein, für das man 5,00 € bezahlt? Kreuze die richtige Lösung an. (!Genau 4 kg) (!Höchstens 10 kg) (Über 3 kg bis 5 kg) (!Über 5 kg bis 8 kg) | |||||||||||||||||||||||||||||||||||
Aufgabe 2: Zwei Fässer Jedes der beiden dargestellten Fässer fasst genau 100l. Sie werden mit Wasser gefüllt. Zu Beginn des Füllvorgangs enthält Fass 2 bereits 60l. Fass 1 wird mit 2 l/min gleichmäßig gefüllt, Fass 2 mit 0,5 l/min. Stimmt es, dass Fass 2 zuerst überläuft? Schreib auf, wie du zu deiner Entscheidung gekommen bist.
Fass I : 2 x = 100 x = 50 => Fass I läuft nach 50 Min. über. Fass II: 0,5 x + 60 = 100 x = 80 => Fass II läuft nach 80 Min. über. “
Fass I Fass II 30’ 60l 75l 31’ 62 32’ 64 76 33’ 66 34’ 68 77 35’ 70 36’ 72 78 37’ 74 38’ 76 79 39’ 78 40’ 80 80
Nach 80 Minuten, weil genau dann beide Fässer voll sind.
| |||||||||||||||||||||||||||||||||||
Aufgabe 3: Nachbarschaftshilfe Drei Schüler erledigen für einen kranken Nachbarn die Gartenarbeit. Fritz hat viel Zeit und fängt schon um 14 Uhr an zu arbeiten. Hans kommt um 15 Uhr und Max um 15:30 Uhr. Um 17 Uhr ist die Arbeit für alle drei erledigt. Der Nachbar gibt den Schülern 50,- € mit der Bitte, das Geld möglichst entsprechend der jeweils geleisteten Arbeitszeit zu verteilen. Wie viel Geld sollte jeder bekommen? Schreibe auf, wie du vorgehst.
| |||||||||||||||||||||||||||||||||||
Aufgabe 4.1: Verknüpfungen Für zwei Zahlen x und y soll gelten: x + y = 1. Kreuze die richtige Aussage an. (!Wenn x negativ ist, dann ist auch y negativ.) (!Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (Wenn x kleiner ist als 1, dann ist y positiv.) (!x und y müssen verschiedene Vorzeichen haben.) (Über 3 kg bis 5 kg) (!Über 5 kg bis 8 kg)
| |||||||||||||||||||||||||||||||||||
Aufgabe 4.2: Verknüpfungen Für zwei Zahlen x und y soll gelten: x · y = 1. Kreuze die richtige Aussage an. (!Wenn x negativ ist, dann ist y positiv.) (!Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (!Wenn x kleiner ist als 1, dann ist y negativ.) (x und y müssen dasselbe Vorzeichen haben.)
| |||||||||||||||||||||||||||||||||||
Aufgabe 4.3: Verknüpfungen Für zwei Zahlen x und y soll gelten: . Kreuze die richtige Aussage an. (!Wenn x negativ ist, dann ist y positiv.) (Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (!Wenn x kleiner ist als 1, dann ist y negativ.) (x und y müssen verschiedene Vorzeichen haben.) | |||||||||||||||||||||||||||||||||||
Aufgabe 5.2: Streichholzkette Wie viele Streichhölzer werden für 12 solche Quadrate benötigt? Kreuze die richtige Antwort an. (!23) (!24) (!36) (37) (!48)
| |||||||||||||||||||||||||||||||||||
Aufgabe 5.3: Streichholzkette Gib eine Gleichung an, die den Zusammenhang zwischen der Anzahl k der Quadrate und der Anzahl s der benötigten Streichhölzer allgemein beschreibt.
| |||||||||||||||||||||||||||||||||||
Aufgabe 6: Noten Das Kreisdiagramm zeigt die Notenverteilung einer Prüfung im Fach Englisch. Welche der folgenden Aussagen zu diesem Kreisdiagramm ist richtig? Kreuze an. (!Es gibt öfter die Note 2 als die Note 4.) (!Ein Drittel der Schülerinnen und Schüler hat die Note 1 oder die Note 2.) (Mehr als 50% der Schülerinnen und Schüler haben eine bessere Note als die Note 4.) (!Weniger als ein Viertel der Schülerinnen und Schüler haben die Note 3.) | |||||||||||||||||||||||||||||||||||
Aufgabe 7: Fisch Das Diagramm zeigt die Menge gefangenen Fischs in jedem Monat. In welchem Zeitramu ist die monatliche Fangmenge an Aal im Vergleich zum Vormonat laut Diagramm prozentual am meisten angestiegen? Kreuze an. (!von März nach April) (!von April nach Mai) (!von September nach Oktober) (von Januar nach Februar) | |||||||||||||||||||||||||||||||||||
Aufgabe 8: Schultaschen Die Schülerinnen und Schüler der Klasse 5a sitzen in Tischgruppen zu jeweils 5 oder 6 Schülerinnen und Schülern. Heute werden im Unterricht die Schultaschen gewogen. Paul kommt zu spät. Die anderen aus seiner Tischgruppe haben bis dahin schon ihre Taschen gewogen: 3,7 kg, 4,6 kg, 4,8 kg, 5,2 kg, 5,3 kg. Mit Pauls Schultasche ergibt sich in dieser Tischgruppe ein druchschnittliches Gewicht von 4,9 kg. Welches Gewicht hatte Pauls Schultasche?
| |||||||||||||||||||||||||||||||||||
Aufgabe 9.1: Preisänderungen im Mobilfunk In dem Diagramm wird dargestellt, wie sich die Preise für Mobilfunk im Vergleich zum Vorjahr prozentual geändert haben. Zum Beispiel sind 2002 die Preise im Vergleich zu 2001 um 8,6 % angestiegen, während die Preise im Vergleich zu 2005 um 10,7 % gefallen sind.
| |||||||||||||||||||||||||||||||||||
Aufgabe 9.2: Preisänderungen im Mobilfunk Um wie viel Prozent sind die Preise von 2002 gegenüber den Preisen von 2000 gestiegen? Kreuze an. (ca. 3,9 %) (!ca. 4,3 %) (!ca 8,6 %) (ca. 12,9 %)
| |||||||||||||||||||||||||||||||||||
Aufgabe 9.3: Preisänderungen im Mobilfunk Marvin behauptet: "2004 waren die Preise genauso hoch wie 2002." Julia sagt: "Nein, sie waren niedriger." Wer von beiden hat recht? Begründe deine Entscheidung.
| |||||||||||||||||||||||||||||||||||
Aufgabe 10: Gelbgrüner Würfel Jede der sechs Flächen eines Würfels ist entweder gelb oder grün angestrichen. Beim Würfeln ist die Wahrscheinlichkeit , dass gelb oben liegt. Kreuze an, wie viele Flächen grün sind. (!eine) (!zwei) (!drei) (vier) (!fünf) | |||||||||||||||||||||||||||||||||||
Aufgabe 11: Der sechste Wurf Ein normaler Spielwürfel wird geworfen. In fünf aufeinander folgenden Würfen landet der Würfel jedes Mal so, dass eine gerade Zahl angezeigt wird. Nun wird der Würfel ein sechstes Mal geworfen. Welche der folgenden Aussagen triftt dann zu? Kreuze an. (!Es ist wahrscheinlicher, dass der Würfel eine gerade Zahl zeigt, als dass er eine ungerade Zahl zeigt.) (!Es ist wahrscheinlicher, dass der Würfel eine ungerade Zahl zeigt, als dass er eine gerade Zahl zeigt.) (Es ist gleich wahrscheinlich, dass eine gerade Zahl oder eine ungerade Zahl gezeigt wird.) (!Der Würfel zeigt mit Sicherheit eine ungerade Zahl.) | |||||||||||||||||||||||||||||||||||
Aufgabe 12: Schrauben In einer Firma, in der Schrauben hergestellt werden, wird am Ende des Produktionsprozesses eine Endkontrolle durchgeführt. Eine überprüfte Kiste enthält 10000 Schrauben. Aus dieser Kiste werden zufällig 200 Schrauben ausgewählt ud überprüft. 10 dieser Schrauben lagen außerhalb der Norm. Wie viel Schrauben, die nicht der Norm entsprechen, sind ungefähr in der ganzen Kiste enthalten? Kreuze an. (!20) (!50) (!200) (500) (! 2000) | |||||||||||||||||||||||||||||||||||
Aufgabe 13.1: Temperatur In dieser Tabelle stehen Temperaturangaben, die jeweils zu festen Uhrzeiten gemessen wurden.
Wann wurde die niedrigste Temperatur gemessen? Kreuze alle richtigen Antworten an. (!Donnerstag um 9 Uhr) (Montag um 9 Uhr) (!Mittwoch um 15 Uhr) (Donnerstag um 21 Uhr) (!Dienstag um 6 Uhr) | |||||||||||||||||||||||||||||||||||
Aufgabe 13.2: Temperatur Welcher Tag war der wärmste? Begründe deine Entscheidung mit den Temperaturangaben aus der Tabelle von 24.1.
| |||||||||||||||||||||||||||||||||||
Aufgabe 14: Internetnutzung 56% der Internetnutzer sind täglich oder fast täglich online Die Nutzung des Internets hat in Deutschland weiter zugenommen. Fast zwei Drittel der Personen ab zehn Jahren (65%) nutzten im ersten Quartal 2006 das Internet. Dies geht aus der aktuellen Auswertung der Befragung privater Haushalte zur Nutzung von Informations- und Kommunikationtechnologien hervor. [...] Innerhalb der Gruppe der Internetnutzer ging im ersten Quartal 2006 mehr als die Hälfte (56%) täglich oder fast täglich online, ein Jahr zuvor waren es noch 50% der Internetnutzer. (Statistisches Bundesamt) Welcher Prozentsatz der Personen ab 10 Jahren ging damit im ersten Quartal 2006 täglich oder fast täglich online? Kreuze an, welcher Wert deinem Ergebnis am nächsten liegt. (36%) (!56%) (!65%) (!86%) (!121%) | |||||||||||||||||||||||||||||||||||
Aufgabe 16.1: Quersumme Die Quersumme einer Zahl erhält man, wenn man ihre Ziffern addiert. Beispiel: Die Zahl 3104 hat die Quersumme 3 + 1 + 0 + 4 = 8 Welches ist die kleinste vierstellige Zahl mit der Quersumme 12? (!129) (!1002) (1029) (!1119) (!1236)
| |||||||||||||||||||||||||||||||||||
Aufgabe 16.2: Quersumme Sabine hat die Quersumme einer vierstelligen Zahl berechnet und als Ergebnis 38 erhalten. Nimm zu diesem Ergebnis Stellung.
| |||||||||||||||||||||||||||||||||||
Aufgabe 17: Zapfsäule 1 Eine Tankstelle informiert mit dem Aufkleber "Je Euro 73 Cent Steuern" über die Steuerbelastung beim Benzinpreis. Wie viel erhält der Staat bei der dargestellten Tankfüllung an Steuern? Kreuze die richtige Antwort an.
| |||||||||||||||||||||||||||||||||||
Aufgabe 18: Benzinverbrauch Um die Angabe zum durchschnittlichen Benzinverbrauch eines Neuwagens auf 100 km in einem Werbeprospekt zu überprüfen, werden Fahrten auf der Autobahn, auf der Landstraße und in der Stadt durchgeführt. Dabei geht man jeweils von einem konstanten Verbrauch des Fahrzeugs aus. Bei der Berechnung des durchschnittlichen Benzinverbrauchs eines Neuwagens auf 100 km werden dann zu gleichen Teilen der Verbrauch auf der Autobahn, in der Stadt und auf der Landstraße berücksichtigt.
Berechne den durchschnittlichen Benzinverbrauch des Neuwagens auf 100 km.
Autobahn Stadt Landstraße 32,4 Liter : 4,5 = 7,2 Liter 19,5 Liter : 2,5 = 7,8 Liter 21 Liter : 3,5 =6 Liter 7,2 Liter + 7,8 Liter + 6 Liter = 21 Liter;21 Liter : 3 = 7 Liter | |||||||||||||||||||||||||||||||||||
Aufgabe 19: Primzahl Begründe, dass die Summe von 4 aufeinanderfolgenden natürlichen Zahlen keine Primzahl sein kann.
Wenn n die erste dieser vier Zahlen ist, dann gilt:
| |||||||||||||||||||||||||||||||||||
Aufgabe 20.1: Notendurchschnitte Berechne den Durchschnitt der Noten der Klasse 9a. Runde auf eine Stelle nach dem Komma.
| |||||||||||||||||||||||||||||||||||
Aufgabe 21: Runden Zwei verschiedene natürliche Zahlen werden auf Zehner gerundet. In beiden Fällen erhält man 20. Um wie viele Einer können sich die beiden Zahlen höchstens unterscheiden? Kreuze an. (!Um 3 Einer) (!Um 4 Einer) (!Um 5 Einer) (Um 9 Einer) (!Um 10 Einer)
| |||||||||||||||||||||||||||||||||||
Aufgabe 22: Rabatt Elektro-Meier will sein Verkaufssortiment erweitern. Das Geschäft möchte zukünftig auch MP3-Player mit verbesserter Speicherkapazität anbieten können. Von einer Herstellerfirma bekommt Meier folgendes Angebot: Der Einkaufspreis für einen MP3-Player beträgt 40,- €. Bei Abnahme von mindestens 100 Stück werden 10 % und bei Abnahme von mindestens 150 Stück werden 15 % Mengenrabatt gegeben. Kreuze für jede Aussage an, ob sie zutrifft oder nicht. (Kauft Elektro-Meier 35 Stück ein, so bekommt er insgesamt 140,- € Rabatt.) (Wenn Elektro-Meier mindestens 50, aber höchstens 75 Stück einkauft, erhält er einen Rabatt von 2,- € pro Stück.) | |||||||||||||||||||||||||||||||||||
Aufgabe 23: Cornflakes Die beiden abgebildeten Packungen für Cornflakes haben die gleiche Form und sind beide vollständig mit Cornflakes gefüllt. Die kleine Packung enthält die Menge Cornflakes, die normalerweise für eine Person reicht. Wie viele solcher Portionen Cornflakes enthält dann die Familienpackung? Kreuze an. (!2) (!4) (!6) (8) (!12) | |||||||||||||||||||||||||||||||||||
Aufgabe 24: Dreieck Die (nicht maßstäbliche) Skizze zeigt das Dreieck ABC mit einem Umfang von 80 cm. c ist die längste Seite des Dreiecks. Kreuze die richtige Aussage an. (!) (!) () (!) Kreuze die richtige Aussage an. (!a = 40cm) (a < 40cm) (!a > 40cm) (! a = 40cm)
| |||||||||||||||||||||||||||||||||||
Aufgabe 25: Winkelgröße Die Geraden t, h, und s verlaufen parallel zueinander. Bestimme den Winkel ß. Dein Vorgehen soll nachvollziehbar sein. Hinweis: Die Zeichnung ist nicht maßstabsgerecht!
| |||||||||||||||||||||||||||||||||||
Aufgabe 26: Puzzleteile Welches dieser Puzzleteile hat den größten Flächeninhalt? Kreuze an.
| |||||||||||||||||||||||||||||||||||
Aufgabe 27: Konstruierbare Dreiecke Entscheide jeweils, ob sich mit den unten angegebenen Bestimmungsstücken (siehe auch Zeichnung) ein Dreieck (bis auf seine Lage) eindeutig konstruieren lässt. Ordne. Hinweis: Die Zeichnung ist nicht maßstabsgerecht!
| |||||||||||||||||||||||||||||||||||
Aufgabe 29: Trapez Kreuze die Eigenschaft an, die für jedes beliebige gleichschenklige Trapez gilt. (!Die Diagonalen stehen senkrecht aufeinander.) (Die Diagonalen sind gleich lang.) (!Je zwei gegenüberliegende Seiten sind gleich lang.) (!Je zwei gegenüberliegende Seiten sind parallel.)
| |||||||||||||||||||||||||||||||||||
Aufgabe 30: Flussbreite Benjamin ist 14 Jahre alt und geht in die 8. Klasse. Er absolviert ein zweiwöchiges Praktikum bei einem ortsansässigen Vermessungsamt und soll die ungefähre Breite eines Flusses bestimmen. Hierzu steckt er entlang des Flussufers eine Standlinie [AB] von 80 m ab. Von den Endpunkten A und B misst er zu einem an der anderen Uferseite stehenden Baum die Winkelmaße a = 35° und b = 55°. Bestimme die Breite des Flusses mit Hilfe einer Zeichnung. |