Benutzer:Aslanoll2/ Lineare Funktionen: Unterschied zwischen den Versionen
| Zeile 22: | Zeile 22: | ||
== '''Punktprobe''' == | == '''Punktprobe''' == | ||
{{Box|Info|Mit der Punktprobe können wir überprüfen, ob ein bestimmter Punkt auf einem gegebenen Graphen liegt:|Kurzinfo}} | {{Box|Info|Mit der Punktprobe können wir überprüfen, ob ein bestimmter Punkt auf einem gegebenen Graphen liegt:|Kurzinfo}}- Idee hinter der Punktprobe erläutern mit Bezug auf Vorwissen | ||
- | |||
== Steigung einer linearen Funktion == | == Steigung einer linearen Funktion == | ||
- Erinnerung: Graph einer linearen Funktion hat immer die gleiche Steigung | |||
- m berechnen (Steigungsdreieck) | |||
- Bezug herstellen: m berechnen, um Funktionsterm bestimmen zu können | |||
== '''Funktionsterm bestimmen''' == | == '''Funktionsterm bestimmen''' == | ||
- Vorgehen erläutern und Idee dahinter mit Bezug auf Steigung (vorherige Einheit) | |||
- y-Achsenabschnitt | |||
- Steigungsdreieck und y-Achsenabschnitt in Kombination, um Funktionsterm bestimmen zu können | |||
- anhand von 2 Punkten, die auf einem Graphen liegen, den Funktionsterm bestimmen und den Graphen zeichnen | |||
<iframe src="https://learningapps.org/watch?app=323213" style="border:0px;width:100%;height:500px" allowfullscreen="true" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?app=323213" style="border:0px;width:100%;height:500px" allowfullscreen="true" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
== '''Nullstellen linearer Funktionen''' == | == '''Nullstellen linearer Funktionen''' == | ||
- Vorgehen erläutern mit Hilfe von y-Achsenabschnitt | |||
- Nullstellen berechnen | |||
* | * | ||
Version vom 3. Dezember 2025, 16:43 Uhr
Lineare Funktionen
Das erwartet dich in diesem Lernpfad:
- Steigungen linearer Funktionen ermitteln
- Funktionsterme bestimmen
- Überprüfen, ob Punkte auf dem Graphen einer linearer Funktion liegen
- Nullstellen linearer Funktionen bestimmen
Das solltest du bereits können:
- Funktionsbegriff (Wertetabelle; eindeutige Zuordnung)
- Eigenschaften linearer Funktionen benennen und erkennen
Wiederholung (freiwillig)
Welcher Graph stellt eine Funktion dar (evtl. Hilfestellung und erläutern, was eine Funktion ausmacht --> eindeutige Zuordnung)
Wertetabelle
Allgemeine Form
Punktprobe
- Idee hinter der Punktprobe erläutern mit Bezug auf Vorwissen
-
Steigung einer linearen Funktion
- Erinnerung: Graph einer linearen Funktion hat immer die gleiche Steigung
- m berechnen (Steigungsdreieck)
- Bezug herstellen: m berechnen, um Funktionsterm bestimmen zu können
Funktionsterm bestimmen
- Vorgehen erläutern und Idee dahinter mit Bezug auf Steigung (vorherige Einheit)
- y-Achsenabschnitt
- Steigungsdreieck und y-Achsenabschnitt in Kombination, um Funktionsterm bestimmen zu können
- anhand von 2 Punkten, die auf einem Graphen liegen, den Funktionsterm bestimmen und den Graphen zeichnen
Nullstellen linearer Funktionen
- Vorgehen erläutern mit Hilfe von y-Achsenabschnitt
- Nullstellen berechnen
