Umfang von Rechteck und Quadrat: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 15: | Zeile 15: | ||
{{Box|Experimentieren|Sieh dir die Geogebra - Datei an und diskutiere mit deinem Nachbarn bzw. deiner Nachbarin, wie du den Umfang eines Rechtecks berechnen kannst. https://www.geogebra.org/m/MhZVUNpe#material/q2fuqXUV |Experimentieren}} | {{Box|Experimentieren|Sieh dir die Geogebra - Datei an und diskutiere mit deinem Nachbarn bzw. deiner Nachbarin, wie du den Umfang eines Rechtecks berechnen kannst. https://www.geogebra.org/m/MhZVUNpe#material/q2fuqXUV |Experimentieren}} | ||
{{Box|Was ist ein Umfang?|Erkläre danach einem Schulkollegen bzw. einer Schulkollegin, was ein Umfang einer Figur ist. | {{Box|Was ist ein Umfang?|Erkläre danach einem Schulkollegen bzw. einer Schulkollegin, was ein Umfang einer Figur ist. Holt euch bei der Lehrperson einen Zettel und haltet eure Ergebnisse dort fest. hier fest. |Meinung}} | ||
{{Box|Merke|Schreibe den folgenden Merksatz ins Schulübungsheft (Überschrift: Umfang eines Rechtecks) |Merksatz}} | {{Box|Merke|Schreibe den folgenden Merksatz ins Schulübungsheft (Überschrift: Umfang eines Rechtecks) |Merksatz}} |
Version vom 14. Mai 2023, 16:17 Uhr
Lernpfad
Umfang von Rechteck und Quadrat
Experimentieren
Sieh dir die Geogebra - Datei an und diskutiere mit deinem Nachbarn bzw. deiner Nachbarin, wie du den Umfang eines Rechtecks berechnen kannst. https://www.geogebra.org/m/MhZVUNpe#material/q2fuqXUV
Was ist ein Umfang?
Erkläre danach einem Schulkollegen bzw. einer Schulkollegin, was ein Umfang einer Figur ist. Holt euch bei der Lehrperson einen Zettel und haltet eure Ergebnisse dort fest. hier fest.
Merke
Schreibe den folgenden Merksatz ins Schulübungsheft (Überschrift: Umfang eines Rechtecks)
Den Umfang eines Rechtecks kannst du mit folgenden Formeln berechnen:
Welche Formel du zur Berechnung verwendet, ist dir selbst überlassen.
Jetzt bist du an der Reihe!
Berechne den Umfang eines Rechtecks mit folgenden Angaben: a = 51 mm, b = 3 cm. Achte auf die Einheiten. Orientiere dich am Beispiel oben.
Experimentieren
Sieh dir die Geogebra - Datei an und diskutiere mit deinem Nachbarn, wie du den Umfang eines Quadrats berechnen kannst. https://www.geogebra.org/m/Bh9Xb7KT
Merke
Schreibe den folgenden Merksatz ins Schulübungsheft (Überschrift: Umfang eines Quadrats)
Den Umfang eines Quadrats kannst du mit folgenden Formeln berechnen. Welche Formel du zur Berechnung verwendet, ist dir selbst überlassen.
Kreuzwörträtsel
Löse das Kreuzworträtsel mithilfe der Formeln zur Berechnung des Umfangs eines Rechtecks und Quadrats. Schreibe die Zahlen aus z.B. 50 = fünfzig. Verwende einen Notizblock für Nebenrechnungen.
sechszig | Quadrat: a = 15, u = ? |
sechsundzwanzig | Rechteck: a = 6 , b = 7 , u = ? |
hundertsechsundneunzig | Quadrat: a = 49 , u = ? |
zehntausendeinundsechzig | Rechteck : a = 968 , b = ? , u = 22 058 |
vier | Quadrat: u = 16 , a = ? |
zweihundertsechsundfünzig | Rechteck: a = 70 , b = 58 , u = ?? |
Üben
Textaufgaben. Versuche die Textaufgaben zu lösen. Achte auf eine ordentliche Form und halte dich dabei an den Beispielen des Merktextes fest.
- Ein Hühnerstall soll einen neuen Zaun bekommen. Das Gehege ist 8 m lang und 5 m breit. Wie viel Mater Zaun müssen für das Gehege gekauft werden?
- Timo läuft dreimal um den quadratischen Spielplatz, der eine Seitenlänge von 27 m hat. Wie weit muss Timo laufen?