Benutzer:HWollny/Quadratische Funktionen und ihre Graphen/Parameter d: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 65: | Zeile 65: | ||
<span class="brainy hdg-file02 fa-5x"></span> '''<u>Aufgabe 5</u>''' | <span class="brainy hdg-file02 fa-5x"></span> '''<u>Aufgabe 5</u>''' | ||
*Haltet eure '''Erkenntnisse''' dieses Lernpfades | *Haltet eure '''Erkenntnisse''' dieses Lernpfades auf dem Arbeitsblatt zur Vorbereitung für die Expertenrunde fest. Nutzt als Beispiel die Funktion, für die ihr Expertin/Experte seid. | ||
<span class="brainy hdg-exclamation fa-2x"></span> | <span class="brainy hdg-exclamation fa-2x"></span> | ||
*WICHTIG: Jeder von euch sollte gleich | *WICHTIG: Jeder von euch sollte gleich dazu bereit sein, eure Erkenntnisse den anderen Gruppen vorstellen zu können. | ||
*Falls ihr noch Probleme oder Fragen habt, dann tauscht euch in eurer Gruppe darüber aus. | *Falls ihr noch Probleme oder Fragen habt, dann tauscht euch in eurer Gruppe darüber aus. | ||
Falls ihr gar nicht weiter kommt, dann fragt natürlich immer gerne Frau Wollny :) | Falls ihr gar nicht weiter kommt, dann fragt natürlich immer gerne Frau Wollny :) |
Version vom 5. August 2022, 08:02 Uhr
Stammgruppe 2
Aufgabe 1
- Stellt euch gegenseitig eure Funktionsgleichungen und die dazu gehörenden Funktionsgraphen vor.
- Vergleicht anschließend eure Graphen und Funktionsgleichungen auf Gemeinsamkeiten und Unterschiede sowie mit der Normalparabel.
- Wie ist die Form der Parabeln im Vergleich zur Normalparabel?
- Wie ist ihre Lage im Koordinatensystem im Vergleich zur Normalparabel?
Die Funktionen, für die ihr Expertinnen und Experten seid, sind alles quadratische Funktionen der Form .
Der Buchstabe d in der Funktionsgleichung wird Parameter genannt, d.h. wir können für d verschiedene Werte einsetzen und erhalten immer andere Funktionen.Aufgabe 2
Gebt den Wert von d in den folgenden Funktionen an.
Aufgabe 3
Betrachtet nun die Funktionen und .
Wie sehen die Graphen der Funktionen aus und wie ist ihre Lage im Koordinatensystem?
- Stellt zunächst gemeinsam Vermutungen an, ohne euch den Graphen der Funktion anzuschauen.
- Überprüft eure Vermutungen anschließend mithilfe der Geogebra-Datei.
Gebt dazu den passenden Wert für d in das Eingabefeld ein oder verschiebt den Schieberegler auf den passenden Wert.
Aufgabe 4
Diskutiert den Zusammenhang zwischen dem Parameter d in der Funktionsgleichung und den dazugehörigen Graphen.
- Ihr könnt dafür in dem GeoGebra-Applet verschiedene Zahlen für d einsetzen oder den Schieberegler verschieben.
Vervollständigt die folgenden Sätze
- Wenn der Parameter d eine positive Zahl ist, dann ...
- Wenn der Parameter d eine negative Zahl ist, dann ...
- Je größer die Zahl ist, die wir für d einsetzen, desto ...
- Je kleiner die Zahl ist, die wir für d einsetzen, desto ...
Aufgabe 5
- Haltet eure Erkenntnisse dieses Lernpfades auf dem Arbeitsblatt zur Vorbereitung für die Expertenrunde fest. Nutzt als Beispiel die Funktion, für die ihr Expertin/Experte seid.
- WICHTIG: Jeder von euch sollte gleich dazu bereit sein, eure Erkenntnisse den anderen Gruppen vorstellen zu können.
- Falls ihr noch Probleme oder Fragen habt, dann tauscht euch in eurer Gruppe darüber aus.
Falls ihr gar nicht weiter kommt, dann fragt natürlich immer gerne Frau Wollny :)