Prozente und Prozentrechnung: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 38: | Zeile 38: | ||
<iframe src="https://www.geogebra.org/classic/rytqqtnq?embed" width="800" height="600" allowfullscreen="" style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> | <iframe src="https://www.geogebra.org/classic/rytqqtnq?embed" width="800" height="600" allowfullscreen="" style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> | ||
<iframe src="https://learningapps.org/watch?v=prbckmkp321" style="border:0px;width: | <iframe src="https://learningapps.org/watch?v=prbckmkp321" style="border:0px;width:100%;height:500px" allowfullscreen="true" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> |
Version vom 21. August 2021, 19:06 Uhr
Lernpfad
Herzlich willkommen im Lernpfad Prozente und Prozentrechnung!
Dieser Lernpfad soll dir dabei helfen, dein Wissen aus der Bruchrechnung auf die Prozentrechnung zu übertragen und deine Vorstellung von Prozenten auf- bzw. auszubauen.
Das Schöne daran ist, dass du vieles von dem, was du bereits aus der Bruchrechnung kennst, hier direkt anwenden kannst.
Der Begriff "Prozent" heißt dabei nichts anderes als "von Hundert". Du hast es also im Prinzip mit nichts anderem zu tun, als einem Bruch, dessen Nenner immer 100 ist. Es gibt also keinen Grund, vor der Prozentrechnung Angst zu haben!
Also: Leg los!
Wiederholung: Bruchteil, Anteil und Ganzes
Info
Zunächst rufen wir uns in Erinnerung, was der Bruchteil, der Anteil und das Ganze in der Bruchrechnung war. Noch einmal: Die Prozentrechnung ist nichts anderes als ein Sonderfall der Bruchrechnung.
Beispiel
In diesem Beispiel schauen wir uns noch einmal drei Viertel eines Kreises an.
TEST