Vektorrechnung/WHG Q1 Definition (Orts-)Vektor: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 7: | Zeile 7: | ||
Der Vektor <math>\vec{OP}=\begin{pmatrix}p_1\\p_2\\p_3\end{pmatrix}</math>, welcher sich durch einen Pfeil zwischen dem Nullpunkt und dem Punkt <math>P (p_1|p_2|p_3)</math> darstellen lässt, heißt auch '''Ortsvektor''' des Punktes <math>P</math>. | Der Vektor <math>\vec{OP}=\begin{pmatrix}p_1\\p_2\\p_3\end{pmatrix}</math>, welcher sich durch einen Pfeil zwischen dem Nullpunkt und dem Punkt <math>P (p_1|p_2|p_3)</math> darstellen lässt, heißt auch '''Ortsvektor''' des Punktes <math>P</math>. | ||
|Merksatz}} | |Merksatz}} | ||
{{Box | |||
|Merke | |Merke | ||
| | |Kennt man die Koordinaten eines Punktes <math>A (a_1|a_2|a_3)</math> und eines Vektors <math>\vec{v}=\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}</math>, so lassen sich die Koordinaten des Ortsvektors des Endpunktes <math>E</math> der zugehörigen Verschiebung wie folgt berechnen: | ||
<math>\vec{OE}=\begin{pmatrix}a_1+v_1\\a_2+v_2\\a_3+v_3\end{pmatrix}</math>. | <math>\vec{OE}=\begin{pmatrix}a_1+v_1\\a_2+v_2\\a_3+v_3\end{pmatrix}</math>. | ||
|Merksatz}} | |Merksatz}} | ||
<br> | <br> | ||
<br> | <br> | ||
{{Fortsetzung|weiter=Übungen|weiterlink=WHG Q1 Vektorrechnung/WHG_Q1_Kurze_Übungen_zu_(Orts-)Vektoren|vorher=Übung - Pfeile und Vektoren|vorherlink=WHG Q1 Vektorrechnung/WHG Q1 Kurze Übungen zu Pfeilen und Vektoren}} | {{Fortsetzung|weiter=Übungen|weiterlink=WHG Q1 Vektorrechnung/WHG_Q1_Kurze_Übungen_zu_(Orts-)Vektoren|vorher=Übung - Pfeile und Vektoren|vorherlink=WHG Q1 Vektorrechnung/WHG Q1 Kurze Übungen zu Pfeilen und Vektoren}} |
Version vom 1. Oktober 2020, 14:40 Uhr
Merke
Sind zwei Punkte und gegeben, dann lassen sich die Koordinaten eines Vektors wie folgt bestimmen: .
Der Vektor , welcher sich durch einen Pfeil zwischen dem Nullpunkt und dem Punkt darstellen lässt, heißt auch Ortsvektor des Punktes .
Merke
Kennt man die Koordinaten eines Punktes und eines Vektors , so lassen sich die Koordinaten des Ortsvektors des Endpunktes der zugehörigen Verschiebung wie folgt berechnen: .