Vektorrechnung/WHG Q1 Vermischte Übungen zu Vektoren: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 16: | Zeile 16: | ||
====Der Weg durch das Labyrinth - Vektoren zeichnen==== | ====Der Weg durch das Labyrinth - Vektoren zeichnen==== | ||
*Zeichnen Sie mit Hilfe von Vektoren einen lückenlosen Weg durch das Labyrinth vom Start- zum Zielpunkt ein. Geben Sie dazu im Eingabefeld die Vektoren einzeln in folgender Schreibweise ein: ''Vektor((<math>a_1</math>, <math>a_2</math>), (<math>b_1</math>, <math>b_2</math>))'' <math>-</math> Dies beschreibt den Vektor vom Punkt <math>A(a_1|a_2)</math> zum Punkt <math>B(b_1|b_2)</math>. | *Zeichnen Sie mit Hilfe von Vektoren einen lückenlosen Weg durch das Labyrinth vom Start- zum Zielpunkt ein. Geben Sie dazu im Eingabefeld die Vektoren einzeln in folgender Schreibweise ein: ''Vektor((<math>a_1</math>, <math>a_2</math>), (<math>b_1</math>, <math>b_2</math>))'' <math>-</math> Dies beschreibt den Vektor vom Punkt <math>A(a_1|a_2)</math> zum Punkt <math>B(b_1|b_2)</math>. | ||
Zeile 25: | Zeile 24: | ||
<br> | <br> | ||
==== | ====Vektoren im Koordinatensystem==== | ||
Gegeben ist der Vektor <math>\vec{a}=\begin{pmatrix}-3\\1\end{pmatrix}</math>. | Gegeben ist der Vektor <math>\vec{a}=\begin{pmatrix}-3\\1\end{pmatrix}</math>. | ||
Zeile 38: | Zeile 36: | ||
*Geht man von <math>Q'</math> aus drei Einheiten in Richtung der <math>x_1</math>-Achse und anschließend eine Einheit gegen die Richtung der <math>x_2</math>-Achse, so erreicht man <math>Q</math>: <math>Q(1+3|-5-1)</math> bzw. <math>Q(4|-6)</math>. | *Geht man von <math>Q'</math> aus drei Einheiten in Richtung der <math>x_1</math>-Achse und anschließend eine Einheit gegen die Richtung der <math>x_2</math>-Achse, so erreicht man <math>Q</math>: <math>Q(1+3|-5-1)</math> bzw. <math>Q(4|-6)</math>. | ||
}} | }} | ||
<br> | |||
====Grafische Vektoraddition/-subtraktion==== | |||
Text | |||
<br> | <br> | ||
<br> | <br> | ||
{{Fortsetzung|weiter=zurück zur Übersicht|weiterlink=WHG_Q1_Vektorrechnung|vorher=Definition (Orts-)Vektor|vorherlink=WHG Q1 Vektorrechnung/WHG Q1 Definition (Orts-)Vektor}} | {{Fortsetzung|weiter=zurück zur Übersicht|weiterlink=WHG_Q1_Vektorrechnung|vorher=Definition (Orts-)Vektor|vorherlink=WHG Q1 Vektorrechnung/WHG Q1 Definition (Orts-)Vektor}} |
Version vom 21. September 2020, 09:02 Uhr
Übung
Auf dieser Seite finden Sie vermischte Übungen zum Rechnen mit Vektoren.
Im Rahmen unterschiedlicher Aufgabentypen können Sie Ihr neu erworbenes Wissen vertiefen.
Ortsvektoren
Bestimmen Sie den Ortsvektor des Punktes , indem Sie Anfangs- und Endpunkt des Pfeiles bewegen.
Der Weg durch das Labyrinth - Vektoren zeichnen
- Zeichnen Sie mit Hilfe von Vektoren einen lückenlosen Weg durch das Labyrinth vom Start- zum Zielpunkt ein. Geben Sie dazu im Eingabefeld die Vektoren einzeln in folgender Schreibweise ein: Vektor((, ), (, )) Dies beschreibt den Vektor vom Punkt zum Punkt .
- Begründen Sie anschließend, welche der Pfeile zum selben Vektor gehören.
Vektoren im Koordinatensystem
Gegeben ist der Vektor .
- Zeichnen Sie drei Pfeile, die den Vektor repräsentieren, in ein Koordinatensystem.
- Es gilt: mit bestimmen Sie die Koordinaten von .
- Es gilt: mit bestimmen Sie die Koordinaten von .
- -
- Geht man von aus drei Einheiten in Richtung der -Achse und anschließend eine Einheit in Richtung der -Achse, so erreicht man : bzw. .
- Geht man von aus drei Einheiten in Richtung der -Achse und anschließend eine Einheit gegen die Richtung der -Achse, so erreicht man : bzw. .
Grafische Vektoraddition/-subtraktion
Text