Vektorrechnung/WHG Q1 Gegenvektor: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 12: Zeile 12:
* Welchen Vektor erhält man, wenn man den Vektor <math>\vec{b}</math> und seinen Gegenvektor <math>-\vec{b}</math> addiert?
* Welchen Vektor erhält man, wenn man den Vektor <math>\vec{b}</math> und seinen Gegenvektor <math>-\vec{b}</math> addiert?
|Arbeitsmethode}}
|Arbeitsmethode}}
{{Lösung versteckt|Addiert man zum Vektor <math>\vec{b}</math> den Gegenvektor <math>-\vec{b}</math>, so erhält man den Nullvektor: <math>\vec{b}+(-\vec{b})=\vec{b}-\vec{b}=\vec{0}</math>}}
|
|
<ggb_applet id="uhdkerem" width="400" height="310" />
<ggb_applet id="uhdkerem" width="400" height="310" />
}}  
}}  
<br>
{{Lösung versteckt|Addiert man zum Vektor <math>\vec{b}</math> den Gegenvektor <math>-\vec{b}</math>, so erhält man den Nullvektor: <math>\vec{b}+(-\vec{b})=\vec{b}-\vec{b}=\vec{0}</math>}}
<br>
<br>
<br>
<br>
{{Fortsetzung|weiter=Vektorsubtraktion|weiterlink=WHG_Q1_Vektorrechnung/WHG_Q1_Vektorsubtraktion|vorher=Übung - Vektoraddition|vorherlink=WHG_Q1_Vektorrechnung/WHG_Q1_Kurze Übungen zur Vektoraddition}}
{{Fortsetzung|weiter=Vektorsubtraktion|weiterlink=WHG_Q1_Vektorrechnung/WHG_Q1_Vektorsubtraktion|vorher=Übung - Vektoraddition|vorherlink=WHG_Q1_Vektorrechnung/WHG_Q1_Kurze Übungen zur Vektoraddition}}

Version vom 17. September 2020, 08:39 Uhr

Merke

Gegeben ist der Vektor . Der Vektor heißt Gegenvektor zu .



Aufgabe

Das nebenstehende Applet zeigt einen Vektor und seinen Gegenvektor .

  • Verändern Sie den Anfangs- und Endpunkt des Vektors . Beobachten Sie dabei die Koordinaten des Gegenvektors.
  • Welchen Vektor erhält man, wenn man den Vektor und seinen Gegenvektor addiert?
Addiert man zum Vektor den Gegenvektor , so erhält man den Nullvektor:
GeoGebra