Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Grundwissen - Zusammenfassung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Zeile 6: Zeile 6:
Lineare Funktion sind besondere Funktionen, die eine Funktionsgleichung der Form <math>f(x)= m*x+b</math>oder <math>y=m*x+b</math>haben. Der Graph einer linearen Funktion ist eine Gerade. Die Zahl <math>m</math>gibt den Wert der Steigung an und die Zahl <math>b</math>gibt den y-Wert des Schnittpunkts der Geraden mit der y-Achse an.
Lineare Funktion sind besondere Funktionen, die eine Funktionsgleichung der Form <math>f(x)= m*x+b</math>oder <math>y=m*x+b</math>haben. Der Graph einer linearen Funktion ist eine Gerade. Die Zahl <math>m</math>gibt den Wert der Steigung an und die Zahl <math>b</math>gibt den y-Wert des Schnittpunkts der Geraden mit der y-Achse an.


===Bestimmung der Steigung===
<br />
<u>Die Steigung des Graphen einer linearen Funktion</u>  oder <u>die Steigung einer Geraden durch die Punkte A und B</u> kann mit Hilfe des Differenzenquotienten berechnet werden.


====Der Differenzenquotient====
====Der Differenzenquotient====
Die Steigung des Graphen einer linearen Funktion oder die Steigung einer Geraden durch die Punkte A und B kann mit Hilfe des Differenzenquotienten berechnet werden.
Ist eine Funktion f auf einem Intervall <math>[a;b]</math> definiert, so gibt der Differenzenquotient  
Ist eine Funktion f auf einem Intervall <math>[a;b]</math> definiert, so gibt der Differenzenquotient  


Zeile 16: Zeile 17:
Die Differenzen können auch als <math>\Delta{y} </math>und <math>\Delta{x}</math>geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.   
Die Differenzen können auch als <math>\Delta{y} </math>und <math>\Delta{x}</math>geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.   


===== Beispiele: =====   
=====Beispiele:=====   


[[Datei:Beispiel_DQ.png|rand|380x380px]]                [[Datei:Beispiel_2_DQ.png|rand|430x430px]]
[[Datei:Beispiel_DQ.png|rand|380x380px]]                [[Datei:Beispiel_2_DQ.png|rand|430x430px]]

Version vom 7. August 2019, 07:54 Uhr

Auf dieser Seite werden alle Voraussetzung wiederholt, die du zur Bearbeitung des Lernpfades benötigst.

Wiederholung

Lineare Funktionen

Lineare Funktion sind besondere Funktionen, die eine Funktionsgleichung der Form oder haben. Der Graph einer linearen Funktion ist eine Gerade. Die Zahl gibt den Wert der Steigung an und die Zahl gibt den y-Wert des Schnittpunkts der Geraden mit der y-Achse an.


Der Differenzenquotient

Die Steigung des Graphen einer linearen Funktion oder die Steigung einer Geraden durch die Punkte A und B kann mit Hilfe des Differenzenquotienten berechnet werden.

Ist eine Funktion f auf einem Intervall definiert, so gibt der Differenzenquotient

die Steigung der Geraden durch die Punkte und an.

Die Differenzen können auch als und geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.

Beispiele:

Beispiel DQ.png Beispiel 2 DQ.png

Die h - Schreibweise

Anstatt die Differenz in Relation zur Änderung der y-Werte zu setzen, kann man den Differenzenquotienten auch wie folgt schreiben:




Die mittlere Änderungsrate


Mit Änderungsrate ist eine relative Änderung eines Bestandes zu dessen abhängiger Größe zu verstehen. Beispiele für für solche Bestandsgrößen und Änderungen sind in folgender Tabelle illustriert.

Bestandsgröße Zuflüsse Abflüse
Anzahl der Schüler Einschulungen Schulabgänger
Treibstoffmenge im Tank Tanken an der Tankstelle Treibstoffverbrauch
Kontostand Zubuchung Abbuchung
Anzahl der Hotelgäste ankommende Gäste abreisende Gäste
Staatsverschuldung Staatseinnahmen Staatsausgaben
Beispiel

Bei einem Experiment wurde die Temperatur einer Flüssigkeit in 10 Minuten Abständen gemessen. Die mittlere Änderungsrate der Temperatur lässt sich nun mit Hilfe des Differenzenquotient berechnen: