Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente: Unterschied zwischen den Versionen
K (→Die Tangente) Markierung: 2017-Quelltext-Bearbeitung |
K (→Die Tangente) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 11: | Zeile 11: | ||
{{Lösung versteckt|1= Lösung |Merksatz}} | {{Lösung versteckt|1= Lösung |Merksatz}} | ||
<br/> | <br/> | ||
d) Ergänzen Sie zu den Gemeinsamkeiten aus Aufgabe a) was Ihnen in Aufgabe b) und c) aufgefallen ist. {{Lösung versteckt|1={{Box|Die Tangente als Schmiegegerade|Die Eigenschaft der Tangente sich dem Graphen einer Funktion in einer kleinen Umgebungen anzupassen | d) Ergänzen Sie zu den Gemeinsamkeiten aus Aufgabe a) was Ihnen in Aufgabe b) und c) aufgefallen ist. {{Lösung versteckt|1={{Box|Die Tangente als Schmiegegerade|Die Eigenschaft der Tangente sich dem Graphen einer Funktion in einer kleinen Umgebungen anzupassen, wird als die ,,Schmiegeeigenschaft" der Tangente bezeichnet. |Merksatz}}|2=Lösung anzeigen|3=Lösung verbergen}}|Arbeitsmethode | ||
}} | }} | ||
Version vom 8. Juli 2019, 07:18 Uhr
Die Tangente
Sie hatten bereits in der Sekundarstufe 1 mit Tangenten zu tun und haben diese im Zusammenhang mit kreisen kennengelernt.
a) In diesem Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten
b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
Die Steigung einer Sekante
a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert?
b) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.
c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf.
Die Steigung der Tangente
In dieser Aufgabe werden Sie sich die Berechnung der Steigung von Tangenten über den Differenzenquotienten herleiten.
Wir betrachten die Funktion , den festen Punkt mit und den flexiblen Punkt .
a) Nähern Sie den Punkt Q so nahe wie es das Applet zulässt dem Punkt P.
Tuen Sie dies indem Sie in 4 Schritten die Größe verkleinern.
Nutzen Sie hierfür die folgende Tabelle und entnehmen Sie die benötigten Werte dem Applet.
Schätzen Sie in folgenden Applets durch Anlegen eines Stifts auf den Bildschirm die Steigung der Tangente im Punkt P.
Lassen Sie sich dann die Lösung anzeigen.