Zentrische Streckung/Eigenschaften der zentrischen Streckung/3.Station: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Leonie Porzelt
KKeine Bearbeitungszusammenfassung
Main>Leonie Porzelt
Keine Bearbeitungszusammenfassung
Zeile 2: Zeile 2:
[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung|1. Station: Fixelemente]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/2.Station|2. Station: Geradentreue und Parallelentreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|4. Station: Längenverhältnistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|5. Station: Kreistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|6. Station: Zusammenfassung]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/7.Station|7. Station: Übung]]
[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung|1. Station: Fixelemente]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/2.Station|2. Station: Geradentreue und Parallelentreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|4. Station: Längenverhältnistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|5. Station: Kreistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|6. Station: Zusammenfassung]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/7.Station|7. Station: Übung]]
</div>
</div>
<br>


==3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue==
==3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue==
Zeile 23: Zeile 24:
</div>
</div>
<br>
<br>
<br>
:Nur wie kann man jetzt den Flächeninhalt des zentrisch gestreckten Dreiecks berechnen?
:Nur wie kann man jetzt den Flächeninhalt des zentrisch gestreckten Dreiecks berechnen?
:Finde es durch Umformung heraus! Setze dafür die richtigen Aussagen in die passenden Lücken ein:
:Finde es durch Umformung heraus! Setze dafür die richtigen Aussagen in die passenden Lücken ein:

Version vom 3. Juli 2009, 16:47 Uhr


3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue

  • Winkeltreue bedeutet, wenn alle Bildwinkel genauso groß sind wie die Urbildwinkel.
  • Ebenso gilt für die Längentreue, dass alle Bildstrecken genauso lang sind wie die Urbildstrecken.
  • Flächeninhaltstreue liegt vor, wenn der Flächeninhalt des Bildes genauso groß ist, wie der Flächeninhalt des Urbildes.


In diesem Applet siehst du ein Dreieck, dass um k= 3.5 zentrisch gestreckt wurde. Lass dir das Winkelmaß,
die Streckenlängen und den Flächeninhalt nacheinander anzeigen.
Arbeitsauftrag:
Vergleiche die Werte und überlege, welche Eigenschaften zutreffen.


Die Datei [INVALID] wurde nicht gefunden.

Welche Eigenschaften treffen auf die zentrische Streckung zu? (Winkeltreue) (!Längentreue) (!Flächeninhaltstreue)



Nur wie kann man jetzt den Flächeninhalt des zentrisch gestreckten Dreiecks berechnen?
Finde es durch Umformung heraus! Setze dafür die richtigen Aussagen in die passenden Lücken ein:
Porzelt Dreiecke.jpg

AABC = 0,5 ∙ AB ∙ h
AA'B'C' = 0,5 ∙ A'B' ∙ h'
AA'B'C' = 0,5 ∙ |k| ∙ AB|k|h
AA'B'C' = |k|² ∙ 0,5 ∙ AB ∙ h
AA'B'C' = |k|²AABC