Einführung in die Integralrechnung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Maria Eirich
(redirect auf Lehrplan war falsch)
Zeile 1: Zeile 1:
#REDIRECT [[Lehrpläne für Ethik in Thüringen/Gymnasium]]
{|
|{{Lernpfad-M|[[Bild:Integral Titel.png|200px|left]]In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken. Einige Übungen sind dem gleichnamigen Lernpfad [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/index.htm Einführung in die Integralrechnung] der österreichischen Arbeitsgruppe [http://www.austromath.at/medienvielfalt/ Medienvielfalt im Mathematikunterricht] entnommen, die aus einer Kooperation von [http://www.mathe-online.at/ mathe-online] und [http://www.geogebra.at GeoGebra] entstanden ist.
 
<br>'''Voraussetzungen: '''
<br>'''Zeitbedarf: ''' etwa 3 Schulstunden
<br>'''Materialien:'''{{pdf|Infini_AB1.pdf|Das bestimmte Integral}}; {{pdf|Infini AB02.pdf|Aufgaben mit Lösung}}; {{pdf|Infini_AB7.pdf|Integralfunktion}}
}}
|}
{{Kurzinfo-1|M-digital}}
 
==Das Flächenproblem==
 
{|
|[[Bild:Integral Grundstück.png|200px|left]]
|Ziel der folgenden Überlegungen ist es, ein Verfahren zu entwickeln, mit dem Flächeninhalte von krummlinig begrenzten Flächen berechnet werden können.
*Wie groß ist der [http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/Grundstueck.htm Flächeninhalt des Grundstücks]?
*Wie groß ist der [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/wasserverbrauch.htm    Wasserverbrauch]?
|}
 
 
 
==Unter- und Obersumme==
[[bild:Int_abb1.png|220px|right]]
*Begriffsklärung [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/unterobersumme.htm Unter- und Obersumme]
*'''Aufgabe''': Gegeben ist die Funktion f(x) = 0.25 x².
#Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
#Berechne die zugehörige Ober- und Untersumme.
#Gib auch das arithmetische Mittel von Ober- und Untersumme als Näherungswert für die Fläche unter dem Funktionsgraphen an.
#[[Mathematik-digital/Einführung in die Integralrechnung/Lösung|Lösung]]
*Berechnung von Unter- und Obersummen mit [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/unterobersumme_geogebra.htm  GeoGebra]
 
 
 
==Das bestimmte Integral==
*Informiere dich im {{pdf|Infini_AB1.pdf|Arbeitsblatt "Das bestimmte Integral"}} über die Definition des Begriffs "bestimmtes Integral".
*Auf dem {{pdf|Infini AB02 ohne Lösung.pdf|Arbeitsblatt}} sind für einige einfache Funktionen die bestimmten Integrale über dem Intervall [a;b] angegeben. Finde anschauliche Erklärungen für die Herleitung und berechne die bestimmten Integrale für die angegeben Werte! {{pdf|Infini AB02L.pdf|Lösung}}
*Berechne:  <math>\int_{0}^{3}(x^2-2x-3)\, \mathrm{d}x</math>;  <math>\int_{1}^{4}(x^2-2x-3)\, \mathrm{d}x</math>; <math>\int_{4}^{1}(x^2-2x-3)\, \mathrm{d}x</math>
*Überprüfe die Lösung mit folgendem {{Ggb|LP_best_Int.ggb|Applet}}, in dem du mit Hilfe der Schieberegler die Integrationsgrenzen anpasst!
 
 
 
==Flächenberechnung==
[[bild:Int_abb2a.png|220px|right]]
*[http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/bestInt_ue1.htm Aufgaben zur Flächenberechnung] mit Geogebra
* Kläre die Bedeutung des Begriffs [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/bestInt_ue2.htm "negativer Flächeninhalt"]!
*Erkläre den Unterschied zwischen dem Wert des bestimmten Integrals und dem [http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/orientierteflaeche/flaeche.html Flächeninhalt zwischen Graph und x-Achse]!
<br>
<br>
<br>
 
 
==Integralfunktion==
* Bearbeite die Punkte 1 bis 6 des dynamischen Arbeitsblatts zur [http://www.geogebra.at/de/upload/files/dynamische_arbeitsblaetter/lwolf/integralfkt/integralfkt1.html Integralfunktion]. Halte die Ergebnisse in deinem Heft fest.
*Überlege: Welche Funktionen der Kurvenschar sind keine Integralfunktionen?
*Bearbeite nun als Zusammmenfassung das {{pdf|Infini_AB7.pdf|Arbeitsblatt "Die Integralfunktion"}}.
 
 
 
==Zusätzliche Übungsaufgaben==
*[http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/beispiel_unb_grenze.htm  Integration mit unbekannten Grenzen]
 
 
==Für Interessierte==
*Hauptsatz der Differential- und Integralrechnung mit [http://teacher.eduhi.at/alindner/Dyn_Geometrie/DiffInt/HS_DiffInt.htm ausführlichem Beweis]
 
*Informiere dich im Internet über die Geschichte der Integralrechnung.
*Bei welchen Fragestellungen kommt die Integralrechung zum Einsatz? Finde möglichst vielfältige Beispiele.
 
{{Mitgewirkt|
*[[Benutzer:Maria Eirich|Maria Eirich]]
*[[Benutzer:Andrea schellmann|Andrea Schellmann]]}}
 
 
[[Kategorie:Integralrechnung|!]]

Version vom 18. April 2009, 10:45 Uhr

Vorlage:Lernpfad-M

Vorlage:Kurzinfo-1

Das Flächenproblem

Integral Grundstück.png
Ziel der folgenden Überlegungen ist es, ein Verfahren zu entwickeln, mit dem Flächeninhalte von krummlinig begrenzten Flächen berechnet werden können.


Unter- und Obersumme

Int abb1.png
  1. Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
  2. Berechne die zugehörige Ober- und Untersumme.
  3. Gib auch das arithmetische Mittel von Ober- und Untersumme als Näherungswert für die Fläche unter dem Funktionsgraphen an.
  4. Lösung
  • Berechnung von Unter- und Obersummen mit GeoGebra


Das bestimmte Integral

  • Informiere dich im Pdf20.gif Arbeitsblatt "Das bestimmte Integral" über die Definition des Begriffs "bestimmtes Integral".
  • Auf dem Pdf20.gif Arbeitsblatt sind für einige einfache Funktionen die bestimmten Integrale über dem Intervall [a;b] angegeben. Finde anschauliche Erklärungen für die Herleitung und berechne die bestimmten Integrale für die angegeben Werte! Pdf20.gif Lösung
  • Berechne: ; ;
  • Überprüfe die Lösung mit folgendem Geogebra.svg Applet, in dem du mit Hilfe der Schieberegler die Integrationsgrenzen anpasst!


Flächenberechnung

Int abb2a.png





Integralfunktion

  • Bearbeite die Punkte 1 bis 6 des dynamischen Arbeitsblatts zur Integralfunktion. Halte die Ergebnisse in deinem Heft fest.
  • Überlege: Welche Funktionen der Kurvenschar sind keine Integralfunktionen?
  • Bearbeite nun als Zusammmenfassung das Pdf20.gif Arbeitsblatt "Die Integralfunktion".


Zusätzliche Übungsaufgaben


Für Interessierte

  • Informiere dich im Internet über die Geschichte der Integralrechnung.
  • Bei welchen Fragestellungen kommt die Integralrechung zum Einsatz? Finde möglichst vielfältige Beispiele.

Vorlage:Mitgewirkt