Einführung in die Integralrechnung: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
(doppelte Weiterleitung aufgelöst: Lehrpläne für Ethik/Thüringen/Gymnasium → Lehrpläne für Ethik in Thüringen/Gymnasium) |
Main>Maria Eirich (redirect auf Lehrplan war falsch) |
||
Zeile 1: | Zeile 1: | ||
# | {| | ||
|{{Lernpfad-M|[[Bild:Integral Titel.png|200px|left]]In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken. Einige Übungen sind dem gleichnamigen Lernpfad [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/index.htm Einführung in die Integralrechnung] der österreichischen Arbeitsgruppe [http://www.austromath.at/medienvielfalt/ Medienvielfalt im Mathematikunterricht] entnommen, die aus einer Kooperation von [http://www.mathe-online.at/ mathe-online] und [http://www.geogebra.at GeoGebra] entstanden ist. | |||
<br>'''Voraussetzungen: ''' | |||
<br>'''Zeitbedarf: ''' etwa 3 Schulstunden | |||
<br>'''Materialien:'''{{pdf|Infini_AB1.pdf|Das bestimmte Integral}}; {{pdf|Infini AB02.pdf|Aufgaben mit Lösung}}; {{pdf|Infini_AB7.pdf|Integralfunktion}} | |||
}} | |||
|} | |||
{{Kurzinfo-1|M-digital}} | |||
==Das Flächenproblem== | |||
{| | |||
|[[Bild:Integral Grundstück.png|200px|left]] | |||
|Ziel der folgenden Überlegungen ist es, ein Verfahren zu entwickeln, mit dem Flächeninhalte von krummlinig begrenzten Flächen berechnet werden können. | |||
*Wie groß ist der [http://www.austromath.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/Grundstueck.htm Flächeninhalt des Grundstücks]? | |||
*Wie groß ist der [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/wasserverbrauch.htm Wasserverbrauch]? | |||
|} | |||
==Unter- und Obersumme== | |||
[[bild:Int_abb1.png|220px|right]] | |||
*Begriffsklärung [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/unterobersumme.htm Unter- und Obersumme] | |||
*'''Aufgabe''': Gegeben ist die Funktion f(x) = 0.25 x². | |||
#Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft. | |||
#Berechne die zugehörige Ober- und Untersumme. | |||
#Gib auch das arithmetische Mittel von Ober- und Untersumme als Näherungswert für die Fläche unter dem Funktionsgraphen an. | |||
#[[Mathematik-digital/Einführung in die Integralrechnung/Lösung|Lösung]] | |||
*Berechnung von Unter- und Obersummen mit [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/unterobersumme_geogebra.htm GeoGebra] | |||
==Das bestimmte Integral== | |||
*Informiere dich im {{pdf|Infini_AB1.pdf|Arbeitsblatt "Das bestimmte Integral"}} über die Definition des Begriffs "bestimmtes Integral". | |||
*Auf dem {{pdf|Infini AB02 ohne Lösung.pdf|Arbeitsblatt}} sind für einige einfache Funktionen die bestimmten Integrale über dem Intervall [a;b] angegeben. Finde anschauliche Erklärungen für die Herleitung und berechne die bestimmten Integrale für die angegeben Werte! {{pdf|Infini AB02L.pdf|Lösung}} | |||
*Berechne: <math>\int_{0}^{3}(x^2-2x-3)\, \mathrm{d}x</math>; <math>\int_{1}^{4}(x^2-2x-3)\, \mathrm{d}x</math>; <math>\int_{4}^{1}(x^2-2x-3)\, \mathrm{d}x</math> | |||
*Überprüfe die Lösung mit folgendem {{Ggb|LP_best_Int.ggb|Applet}}, in dem du mit Hilfe der Schieberegler die Integrationsgrenzen anpasst! | |||
==Flächenberechnung== | |||
[[bild:Int_abb2a.png|220px|right]] | |||
*[http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/bestInt_ue1.htm Aufgaben zur Flächenberechnung] mit Geogebra | |||
* Kläre die Bedeutung des Begriffs [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/bestInt_ue2.htm "negativer Flächeninhalt"]! | |||
*Erkläre den Unterschied zwischen dem Wert des bestimmten Integrals und dem [http://www.geogebra.org/de/upload/files/dynamische_arbeitsblaetter/lwolf/orientierteflaeche/flaeche.html Flächeninhalt zwischen Graph und x-Achse]! | |||
<br> | |||
<br> | |||
<br> | |||
==Integralfunktion== | |||
* Bearbeite die Punkte 1 bis 6 des dynamischen Arbeitsblatts zur [http://www.geogebra.at/de/upload/files/dynamische_arbeitsblaetter/lwolf/integralfkt/integralfkt1.html Integralfunktion]. Halte die Ergebnisse in deinem Heft fest. | |||
*Überlege: Welche Funktionen der Kurvenschar sind keine Integralfunktionen? | |||
*Bearbeite nun als Zusammmenfassung das {{pdf|Infini_AB7.pdf|Arbeitsblatt "Die Integralfunktion"}}. | |||
==Zusätzliche Übungsaufgaben== | |||
*[http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/content/beispiel_unb_grenze.htm Integration mit unbekannten Grenzen] | |||
==Für Interessierte== | |||
*Hauptsatz der Differential- und Integralrechnung mit [http://teacher.eduhi.at/alindner/Dyn_Geometrie/DiffInt/HS_DiffInt.htm ausführlichem Beweis] | |||
*Informiere dich im Internet über die Geschichte der Integralrechnung. | |||
*Bei welchen Fragestellungen kommt die Integralrechung zum Einsatz? Finde möglichst vielfältige Beispiele. | |||
{{Mitgewirkt| | |||
*[[Benutzer:Maria Eirich|Maria Eirich]] | |||
*[[Benutzer:Andrea schellmann|Andrea Schellmann]]}} | |||
[[Kategorie:Integralrechnung|!]] |
Version vom 18. April 2009, 10:45 Uhr
Vorlage:Lernpfad-M |
Das Flächenproblem
Ziel der folgenden Überlegungen ist es, ein Verfahren zu entwickeln, mit dem Flächeninhalte von krummlinig begrenzten Flächen berechnet werden können.
|
Unter- und Obersumme
- Begriffsklärung Unter- und Obersumme
- Aufgabe: Gegeben ist die Funktion f(x) = 0.25 x².
- Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
- Berechne die zugehörige Ober- und Untersumme.
- Gib auch das arithmetische Mittel von Ober- und Untersumme als Näherungswert für die Fläche unter dem Funktionsgraphen an.
- Lösung
- Berechnung von Unter- und Obersummen mit GeoGebra
Das bestimmte Integral
- Informiere dich im Arbeitsblatt "Das bestimmte Integral" über die Definition des Begriffs "bestimmtes Integral".
- Auf dem Arbeitsblatt sind für einige einfache Funktionen die bestimmten Integrale über dem Intervall [a;b] angegeben. Finde anschauliche Erklärungen für die Herleitung und berechne die bestimmten Integrale für die angegeben Werte! Lösung
- Berechne: ; ;
- Überprüfe die Lösung mit folgendem Applet, in dem du mit Hilfe der Schieberegler die Integrationsgrenzen anpasst!
Flächenberechnung
- Aufgaben zur Flächenberechnung mit Geogebra
- Kläre die Bedeutung des Begriffs "negativer Flächeninhalt"!
- Erkläre den Unterschied zwischen dem Wert des bestimmten Integrals und dem Flächeninhalt zwischen Graph und x-Achse!
Integralfunktion
- Bearbeite die Punkte 1 bis 6 des dynamischen Arbeitsblatts zur Integralfunktion. Halte die Ergebnisse in deinem Heft fest.
- Überlege: Welche Funktionen der Kurvenschar sind keine Integralfunktionen?
- Bearbeite nun als Zusammmenfassung das Arbeitsblatt "Die Integralfunktion".
Zusätzliche Übungsaufgaben
Für Interessierte
- Hauptsatz der Differential- und Integralrechnung mit ausführlichem Beweis
- Informiere dich im Internet über die Geschichte der Integralrechnung.
- Bei welchen Fragestellungen kommt die Integralrechung zum Einsatz? Finde möglichst vielfältige Beispiele.