Integralrechnung: Unterschied zwischen den Versionen
Main>Maria Eirich Keine Bearbeitungszusammenfassung |
Main>Nic3381 (table+) |
||
Zeile 1: | Zeile 1: | ||
== | ==kleine Einführung in die Integralrechnung== | ||
{{Lernpfad-M|{{Kurzinfo-1|M-digital}} | {{Lernpfad-M|{{Kurzinfo-1|M-digital}}Der folgende Lernpfad soll eine kleine Einführung in die Integralrechnung mit den wichtigsten Grundlagen sowohl für Grund- als auch Leistungskurse der Jahrgangsstufe 12 im Fach Mathematik gegeben. <br><br> | ||
Der Lernpfad wurde im Rahmen der | |||
Der Lernpfad wurde im Rahmen der der zweiten Staatsprüfung für das Lehramt an Gymnasien und Gesamtschulen von Nicole Streil (Benutzername: Nic3381) mit Unterstützung von D.Jacobs (Benutzername:Dickesen) erstellt und im Unterricht der Jahrgangsstufe 12 eingesetzt.}} | |||
<br><br> | <br><br> | ||
{{Kasten_blau|Du kannst Dir jederzeit die Lösungen der Aufgaben zeigen lassen die Du gerade bearbeitest, obwohl ich selbstverständlich {{Schrift_grün|erst nach eigenständiger Bearbeitung}} dazu rate! <br> | <br><br> | ||
{{Kasten_blau|Du kannst Dir jederzeit die Lösungen der Aufgaben zeigen lassen die Du gerade bearbeitest, obwohl ich selbstverständlich '''{{Schrift_grün|erst nach eigenständiger Bearbeitung}}''' dazu rate! <br> | |||
Zusätzlich enthalten einige Aufgaben Tipps zur Lösung. Du kannst sie benutzen, falls Du an einem Punkt nicht weiterkommst. <br> | Zusätzlich enthalten einige Aufgaben Tipps zur Lösung. Du kannst sie benutzen, falls Du an einem Punkt nicht weiterkommst. <br> | ||
Alle Aufgaben sollen im Heft schriftlich mit Angabe des Lernpfades (www-Adresse und Überschrift!) bearbeiten werden. Alle Definitionen, Ideen, etc. ebenfalls schriftlich ins Heft übernehmen!}} | |||
<br><br> | <br><br> | ||
So, jetzt | So, jetzt kann es endlich losgehen. <br> <br> | ||
{{Aufgaben-M|1| | {{Aufgaben-M|1| | ||
Eine Rangierlok wurde am Abend von Schaffner Paulsen am Mittleren von drei Signale abgestellt. Dieses Signal steht mittig auf dem Rangierbahnhof "Hasenweide". Am folgenden Tag soll Lokführer Knutsen die Funktionstüchtigkeit der Lok überprüfen, indem er ein paar Rangierübungen abfährt.<br><br> | |||
''' | In folgender Tabelle sind die Geschwindigkeiten und die jeweiligen Zeiten angegeben. | ||
[[ | }} <br> | ||
Bearbeite die folgenden Aufgaben und begründe Deine Antwort | '''Die Lok startet zur Zeit t = 0 am Mittleren Signal.''' <br> <br> | ||
{| class="wikitable " | |||
|+ Tabelle Rangierübung | |||
|- style="background: #DDFFDD;" | |||
! Zeit t[s] | |||
! Geschwindigkeit v[m/s] | |||
|- | |||
| 0 | |||
| 0 | |||
|- | |||
| 4 | |||
| 10 | |||
|- | |||
| 7 | |||
| 0 | |||
|- | |||
| 9 | |||
| 0 | |||
|- | |||
| 12 | |||
| -6 | |||
|- | |||
| 14 | |||
| -7 | |||
|- | |||
| 16 | |||
| -6 | |||
|- | |||
| 18 | |||
| 0 | |||
|- | |||
| 20 | |||
| 0 | |||
|- | |||
| 22 | |||
| 5 | |||
|- | |||
| 24 | |||
| 5 | |||
|- | |||
| 26 | |||
| 0 | |||
|- | |||
| 28 | |||
| -3 | |||
|- | |||
| 30 | |||
| 0 | |||
|} | |||
<br> | |||
Bearbeite die folgenden Aufgaben und begründe Deine Antwort: <br> <br> | |||
a) '''Skizziere den Graphen der Geschwindigkeits-Zeit-Funktion der Rangierlok!'''<br> | |||
{{Lösung versteckt|[[Datei:Nic3381_Rangierlok3.JPG]]}}<br><br> | |||
b) In welchen Zeitabschnitten bewegt sich der Hund nach rechts bzw. nach links? <br> | |||
{{Lösung versteckt|{{Lösung|Bewegung nach rechts wenn der Graph oberhalb der x-Achse liegt für | {{Lösung versteckt|{{Lösung|Bewegung nach rechts wenn der Graph oberhalb der x-Achse liegt für | ||
<math>0 \leq t \leq 8</math> und <math>13 \leq t \leq 16.</math> <br> <br> | <math>0 \leq t \leq 8</math> und <math>13 \leq t \leq 16.</math> <br> <br> | ||
Zeile 19: | Zeile 76: | ||
<math>9 \leq t \leq 13</math> und <math>16 \leq t \leq 28.</math> | <math>9 \leq t \leq 13</math> und <math>16 \leq t \leq 28.</math> | ||
}}}} | }}}} | ||
c) Wann hat der Hund die größte Geschwindigkeit nach rechts bzw. nach links erreicht? <br> | |||
{{Lösung versteckt|{{Lösung|Größte Geschwindigkeit nach rechts am Hochpunkt des Graphen für <math>t = 5.</math> <br> | {{Lösung versteckt|{{Lösung|Größte Geschwindigkeit nach rechts am Hochpunkt des Graphen für <math>t = 5.</math> <br> | ||
Größte Geschwindigkeit nach links am Tiefpunkt des Graphen für <math>t = 25.</math> | Größte Geschwindigkeit nach links am Tiefpunkt des Graphen für <math>t = 25.</math> | ||
Zeile 33: | Zeile 90: | ||
Hund wird langsamer bei positiver Steigung des Graphen: <math>12 \leq t \leq 13 \ ; \ 25 \leq t \leq 28</math> | Hund wird langsamer bei positiver Steigung des Graphen: <math>12 \leq t \leq 13 \ ; \ 25 \leq t \leq 28</math> | ||
}}}} | }}}} | ||
e) Gib eine Schätzung für die Breite des Grundstücks an unter der Voraussetzung, dass der Hund zum Zeitpunkt t = 8 die Grundstücksgrenze erreicht hat. <br> | |||
{{Lösung versteckt|{{Lösung| | {{Lösung versteckt|{{Lösung| | ||
Strecke von der Zaunmitte bis zu den beiden Rändern jeweils ca. 27m. <br> | Strecke von der Zaunmitte bis zu den beiden Rändern jeweils ca. 27m. <br> | ||
Somit ergibt sich eine Grundstücksbreite von ca. 54m. | Somit ergibt sich eine Grundstücksbreite von ca. 54m. | ||
}}}} | }}}} | ||
f) Im letzten Aufgabenteil hast Du ausgehend von der vom Hund zurückgelegten Strecke die Grundstücksbreite geschätzt. Woran kann man die zurückgelegte Strecke in obigem Diagramm erkennen? <br> | |||
{{Lösung versteckt|{{Lösung| | {{Lösung versteckt|{{Lösung| | ||
Die zurückgelegte Strecke zeigt sich im Diagramm als Fläche zwischen dem Graphen und der x-Achse. <br> Dabei ist die zurückgelegte Strecke nach rechts die Fläche zwischen dem Graphen und der x-Achse ''oberhalb'' der x-Achse und die zurückgelegte Strecke nach links ist die Fläche zwischen dem Graphen und der x-Achse ''unterhalb'' der x-Achse! | Die zurückgelegte Strecke zeigt sich im Diagramm als Fläche zwischen dem Graphen und der x-Achse. <br> Dabei ist die zurückgelegte Strecke nach rechts die Fläche zwischen dem Graphen und der x-Achse ''oberhalb'' der x-Achse und die zurückgelegte Strecke nach links ist die Fläche zwischen dem Graphen und der x-Achse ''unterhalb'' der x-Achse! | ||
}}}} | }}}} | ||
g) Befindet sich der Hund nach 28 Sekunden rechts oder links von der Mitte des Zauns? <br> | |||
{{Lösung versteckt|{{Lösung| | {{Lösung versteckt|{{Lösung| | ||
Da der Flächeninhalt zwischen dem Graphen und der x-Achse ''oberhalb'' der x-Achse etwas größer ist als derjenige ''unterhalb'' der x-Achse, befindet sich der Hund rechts von der Zaunmitte. | Da der Flächeninhalt zwischen dem Graphen und der x-Achse ''oberhalb'' der x-Achse etwas größer ist als derjenige ''unterhalb'' der x-Achse, befindet sich der Hund rechts von der Zaunmitte. | ||
Zeile 48: | Zeile 105: | ||
<br><br><br> | <br><br><br> | ||
<div align="center"> | <div align="center"> | ||
[[Mathematik-digital/ | [[Mathematik-digital/eine kleine Einführung in die Integralrechnung/Zusammenhänge|>>Weiter>>]] | ||
</div> | </div> | ||
<br> | <br> | ||
{{Navigation Lernpfad | {{Navigation Lernpfad eine kleine Einführung in die Integralrechnung}} | ||
[[Kategorie:Integralrechnung]] | [[Kategorie:Integralrechnung]] |
Version vom 9. November 2012, 16:14 Uhr
kleine Einführung in die Integralrechnung
Vorlage:Lernpfad-M
Vorlage:Kasten blau
So, jetzt kann es endlich losgehen.
Vorlage:Aufgaben-M
Die Lok startet zur Zeit t = 0 am Mittleren Signal.
Zeit t[s] | Geschwindigkeit v[m/s] |
---|---|
0 | 0 |
4 | 10 |
7 | 0 |
9 | 0 |
12 | -6 |
14 | -7 |
16 | -6 |
18 | 0 |
20 | 0 |
22 | 5 |
24 | 5 |
26 | 0 |
28 | -3 |
30 | 0 |
Bearbeite die folgenden Aufgaben und begründe Deine Antwort:
a) Skizziere den Graphen der Geschwindigkeits-Zeit-Funktion der Rangierlok!
b) In welchen Zeitabschnitten bewegt sich der Hund nach rechts bzw. nach links?
c) Wann hat der Hund die größte Geschwindigkeit nach rechts bzw. nach links erreicht?
c) Wann wird der Hund schneller, wann wird er langsamer?
e) Gib eine Schätzung für die Breite des Grundstücks an unter der Voraussetzung, dass der Hund zum Zeitpunkt t = 8 die Grundstücksgrenze erreicht hat.
f) Im letzten Aufgabenteil hast Du ausgehend von der vom Hund zurückgelegten Strecke die Grundstücksbreite geschätzt. Woran kann man die zurückgelegte Strecke in obigem Diagramm erkennen?
g) Befindet sich der Hund nach 28 Sekunden rechts oder links von der Mitte des Zauns?
Vorlage:Navigation Lernpfad eine kleine Einführung in die Integralrechnung