Trigonometrische Funktionen/Anwendungen 2: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karlo Haberl
Keine Bearbeitungszusammenfassung
Main>Karlo Haberl
Keine Bearbeitungszusammenfassung
Zeile 23: Zeile 23:
</div>
</div>
<br>
<br>
Nun kannst du dein erworbenes Wissen anwenden.


<div style="padding:1px;background:#ddeeff;border:1px groove;">
<div style="padding:1px;background:#ddeeff;border:1px groove;">
Zeile 40: Zeile 38:
<span style="background-color:yellow;">Hefteintrag:</span> Formuliere eine Überschrift und mache dir Notizen zu den Aufgaben!  
<span style="background-color:yellow;">Hefteintrag:</span> Formuliere eine Überschrift und mache dir Notizen zu den Aufgaben!  


Wähle je nach Zeit und Interesse:
Nun kannst du dein erworbenes Wissen anwenden. Wähle je nach Zeit und Interesse:


=Riesenrad=
=Riesenrad=

Version vom 10. November 2012, 11:34 Uhr


FAQ

Hier kannst du die Bedeutung der verwendeten Begriffe nachschlagen.


Lerne einige Anwendungen kennen!


Kompetenzen  Vorlage:Versteckt


Methoden  Vorlage:Versteckt


Hefteintrag: Formuliere eine Überschrift und mache dir Notizen zu den Aufgaben!

Nun kannst du dein erworbenes Wissen anwenden. Wähle je nach Zeit und Interesse:

Riesenrad

Marie hat zwei Brieffreunde. Pablo wohnt in Madrid, Maike in Hamburg. In den Sommerferien trafen sie sich in Wien und gingen in den Prater. Dort bestaunten sie das Riesenrad. Maike fiel sofort ein, als sie das Riesenrad sah, dass sie im Mathematikunterricht die Sinusfunktion durch Abwickeln am Einheitskreis erhalten hatte.

Tipp:
1. Falls du nicht mehr weißt wie das "Abwickeln am Einheitskreis" funktioniert, kannst du es hier nochmals anschauen.
2. Informationen zum Riesenrad im Wiener Prater findest du hier.

Maike meinte nun, dass eine Gondel sicher auch eine Sinuslinie beschreibt. Marie und Pablo wollten dies natürlich erklärt haben. Unterstütze sie, indem du Ihnen mit dem folgenden GeoGebra-Applet bei der Lösungsfindung hilfst.

GeoGebra





Vorlage:Arbeiten

Tageslängen

Nachdem Marie, Pablo und Maike im Prater Riesenrad gefahren sind, gingen sie ein Eis essen. Dabei beobachteten sie die Sonne, wie sie gen Westen immer tiefer stand und unterging. Maike bemerkte dabei, dass sie in Hamburg immer ganz lange Sommertage haben. Pablo meinte, dass die Tage in Madrid gar nicht so lang seien. Marie meint nur, dass heute in Wien ein toller Sommertag war. Allerdings beschäftige sie dieses Problem weiter und Marie bat ihre Freunde einmal über ein Jahr hin zu beobachten wie lang die Tage in Hamburg und Madrid seien. Regelmäßig zum Monatsersten notierten sie die Sonnenaufgangs- und Sonnenuntergangszeiten und schrieben Marie die Tageslängen.

Tageslänge

Marie erstellt daraufhin folgende Tabelle:

Tageslaengen.jpg

Dabei bedeutet der Eintrag 9:21, dass der Tag zwischen Sonnenaufgang und Sonnenuntergang 9 Stunden und 21 Minuten lang ist.

Sie macht dazu dieses Diagramm:

Tageslaengen-diagramm.jpg

Um eine Idee zu bekommen, auf welcher Linie, die dazwischenliegenden Tage liegen könnten, verbindet sie die Punkte


Tageslaengen-diagramm-sinus.jpg

und stellt fest, dass diese Punkte auf einer Sinuslinie liegen.

Nun möchte sie natürlich Terme für diese Sinuskurven der Tageslängen in Madrid und Hamburg angeben und ihren Freunde mitteilen.


Vorlage:Arbeiten

Schwingungen

Schaukeln

Oszilloskop

Experiment Bleistiftmine

Vorlage:Arbeit



Lösungen

Aufgabe 1

Die Sinusfunktion schaut im GeoGebra-Applet etwa so aus: Ggb-riesenrad-lsg.jpg

  1. Die Parameterwerte sind: a = 20, b = 0,05, c = -1,56, d = 30
  2. Die Sinusfunktion lautet: x --> 20sin(0,05x - 1,56) + 30


Aufgabe 2

Amplitude: a =
Mittelwert: d = min + a
Periodendauer: T = 365
Verschiebung:80 Die Periode beginnt am 21. März (Tag- und Nachtgleiche), nicht am 1. Januar!

Tageslänge Hamburg:

a: 4:41,5 ergibt als Zahlenwert 4,69
d: 12:15,5 ergibt als Zahlenwert 12,26
Tageslänge(t) =

Tageslänge Madrid:

a: 2:50 ergibt als Zahlenwert 2,83
d: 12:11 ergibt als Zahlenwert 12,18

Tageslänge(t) =