Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
Main>Jan Wörler
Zeile 51: Zeile 51:
|}
|}


== Funktionen und ihre Umkehrfunktionen ==
== Potenzfunktionen und ihre Umkehrfunktionen ==
=== Beispiel ===


????
Es sei <math>f</math> eine Potenzfunktion, definiert durch <math>f(x)=x^{-\frac 1 3}</math>. Gesucht ist die Umkehrfunktion <math>f^{-1}</math> von <math>f</math> (man beachte die unterschiedliche Bedeutung von f^{-1} und f(x)=x^{-1}!).


== Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S" ==
== Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S" ==

Version vom 29. Januar 2009, 09:14 Uhr

Die Graphen der Funktionen mit f(x) = x-1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen negativen Stammbruch der Form mit als Exponenten haben. Für diese Art der Exponenten gilt: .

Vergleich mit Funktionen aus Stufe 3

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


Exponenten, Brüche und Potenzgesetze

Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponten. Man erinnere sich dabei an die Potenzgesetze, insbesondere an folgenden Zusammenhang:

Für eine reelle Zahl und eine natürliche Zahl wird definiert:
für


Auf unsere Situation angewandt ergibt sich:

Vorlage:Arbeiten

Potenzfunktionen und ihre Umkehrfunktionen

Beispiel

Es sei eine Potenzfunktion, definiert durch . Gesucht ist die Umkehrfunktion von (man beachte die unterschiedliche Bedeutung von f^{-1} und f(x)=x^{-1}!).

Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"

  • Spiegeln
  • Strecken
  • Stauchen
  • Schieben
  • Superponieren

Siehe Video auf www.oberprima.com.


Die Datei [INVALID] wurde nicht gefunden.