Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Main>Jan Wörler |
Main>Jan Wörler K (Lösung Aufgabe 1 verb.) |
||
Zeile 20: | Zeile 20: | ||
:{{Lösung versteckt| | :{{Lösung versteckt| | ||
: zu 1) Der Definitionsbereich ist <math>{\Bbb D}={\Bbb R}^{\geq 0}</math>. Der kleinste Funktionswert <math>y=0</math> wird für <math>x=0</math> angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an. | : zu 1) Der Definitionsbereich ist <math>{\Bbb D}={\Bbb R}^{\geq 0}</math>. Der kleinste Funktionswert <math>y=0</math> wird für <math>x=0</math> angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an. | ||
: zu 2) Man findet die Punkte (0;0) und (1;1) in allen Graphen | : zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von <math>n</math> in allen Graphen. '''Begründung:''' Es gilt <math>0^r = 0</math> und <math>1^r=1</math> für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>. | ||
}} | }} | ||
}}<br> | }}<br> |
Version vom 28. März 2009, 19:54 Uhr
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben.
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Funktionsgraph kennenlernen
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Vergleich mit Funktionen aus Stufe 2
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Bezeichungen: Potenzen und Wurzeln
Wir betrachten hier Potenzfunktionen mit ,
Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) . Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion mit die Umkehrfunktion zur Potenzfunktion der Bauart und die Umkehrfunktion zu (Näheres zur Umkehrfunktion siehe nächstes Kapitel).
Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:
Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. . Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:
Beispiel: Quadratwurzeln
Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:
Die Lösung ist ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:
Die Lösung ist also angeben.
Beispiel: Kubikwurzel
Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:
Einfluss von Parametern
Die Datei [INVALID] wurde nicht gefunden.
*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen
(*Zusatzinformation, freilwillige Ergänzung)
Einschränkung auf IR+0
Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:
Wegen
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:
Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:
- mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass
- .
Dann gilt: IDg = IR.
Als nächstes erfährst du, wie es weitergeht. |