Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Main>Andreas Bauer Keine Bearbeitungszusammenfassung |
Main>Andreas Bauer Keine Bearbeitungszusammenfassung |
||
Zeile 84: | Zeile 84: | ||
== Einfluss von Parametern == | == Einfluss von Parametern == | ||
<ggb_applet height="400" width="600" showMenuBar="false" showResetIcon="true" | |||
filename="8_ax1nc_w.ggb" /> | |||
{{Arbeiten|NUMMER=3|ARBEIT= | |||
In nebenstehendem Applet kannst Du die Parameter <math>a</math> und <math>c</math> mit den Schiebereglern verändern.<br /> | In nebenstehendem Applet kannst Du die Parameter <math>a</math> und <math>c</math> mit den Schiebereglern verändern.<br /> | ||
# Wie beeinflusst der Parameter a die Lage des Graphen? | # Wie beeinflusst der Parameter a die Lage des Graphen? | ||
Zeile 94: | Zeile 95: | ||
}}<br> | }}<br> | ||
}} | }} | ||
<!--{{ggb|8_ax1nc_w.ggb|Datei hochladen}}--> | <!--{{ggb|8_ax1nc_w.ggb|Datei hochladen}}--> |
Version vom 20. Februar 2009, 18:30 Uhr
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Funktionsgraph kennenlernen
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Vergleich mit Funktionen aus Stufe 2
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Bezeichungen: Potenzen und Wurzeln
Wir betrachten hier Potenzfunktionen mit ,
Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ID ist - wie die Aufgaben 1 und 2 gezeigt haben - nicht negativ (Nähere Erläuterungen hierzu: siehe unten) , also ID = IR+0
Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:
Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .
Beispiel: Quadratwurzeln
Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:
Die Lösung ist ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:
Die Lösung ist also angeben.
Beispiel: Kubikwurzel
Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:
Einfluss von Parametern
Die Datei [INVALID] wurde nicht gefunden.
*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen
Einschränkung auf IR+0
Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:
Wegen
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:
Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reelle Zahlen ein, also:
- mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass
- .
Dann gilt: IDg = IR.