Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
KKeine Bearbeitungszusammenfassung
Main>Jan Wörler
KKeine Bearbeitungszusammenfassung
Zeile 8: Zeile 8:


=== Vergleiche mit Funktionen aus Stufe 2 ===
=== Vergleiche mit Funktionen aus Stufe 2 ===
{| cellspacing="10"
|- style="vertical-align:top;"
| {{Arbeiten|NUMMER=1|ARBEIT=
# Verleiche den neuen Graphen mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (gestrichelt).
# Mit dem Schieberegler kannst du wieder die Exponenten verändern.
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
#* Symmetrie
#* Monotonie
#* größte und kleinste Funktionswerte
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
# Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x<sup>2</sup> zu f(x) = x<sup>4</sup>, dann die beim Übergang von f(x) = x<sup>4</sup> zu f(x) = x<sup>6</sup> usw.!
# Wie ändern sich die y-Werte bei f(x) = x<sup>n</sup>, n gerade, wenn der x-Wert ver-k-facht wird?
:{{Lösung versteckt|
:Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br>
:Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>.
}}
}}<br>
|| <ggb_applet height="300" width="350" showMenuBar="false" showResetIcon="true"
filename="3_gerade_xn.ggb" />
|}


* Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
* Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
Zeile 18: Zeile 40:
filename="7_x1n.ggb" />
filename="7_x1n.ggb" />


<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"
filename="test.ggb" /><br /><br />
{{ggb|test.ggb|Datei}}


== Potenzen und Wurzeln ==
== Potenzen und Wurzeln ==

Version vom 25. Januar 2009, 10:42 Uhr

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Vergleiche mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


  • Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
  • Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?

Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.


Die Datei [INVALID] wurde nicht gefunden.


Potenzen und Wurzeln

Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:

Darin ist die n-te Wurzel festgelegt über:


Beispiele:

  • , aber
  • , nicht definiert.
  • , aber auch


Die Datei [INVALID] wurde nicht gefunden.

Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+

Offenbar kann man zum Beispiel wegen

  • , und

die Wurzelfunktionen zumindest bei ungeradem n sowohl für positive als auch negative x definieren.

Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:

Um solche Fälle von Nicht-Eindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass

. Dann gilt: IDg = IR.