Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Main>Jan Wörler Keine Bearbeitungszusammenfassung |
Main>Jan Wörler Keine Bearbeitungszusammenfassung |
||
Zeile 19: | Zeile 19: | ||
== Potenzen und Wurzeln == | == Potenzen und Wurzeln == | ||
Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2</math> heißt ''Wurzelfunktion''. | |||
Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt: | Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt: | ||
Zeile 28: | Zeile 30: | ||
<math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math> | <math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math> | ||
Beispiele: | Beispiele: |
Version vom 19. Januar 2009, 15:45 Uhr
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Vergleiche mit Funktionen aus Stufe 2
- Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
- Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?
Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.
Die Datei [INVALID] wurde nicht gefunden.
Potenzen und Wurzeln
Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.
Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:
Darin ist die n-te Wurzel festgelegt über:
Beispiele:
- , aber
- , nicht definiert.
- , aber auch
Die Datei [INVALID] wurde nicht gefunden.
Definitionsbereich der Wurzelfunktionen
Einschränkung auf IR+
Offenbar kann man zum Beispiel wegen
die Wurzelfunktionen zumindest bei ungeradem n sowohl für positive als auch negative x definieren.
Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:
Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die positiven reelle Zahlen ein, also:
mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass
, dann gilt: IDg = IR.