Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Jan Wörler (Aufgabe 1.3 Lösung ergänzt) |
Main>Maria Eirich (typo) |
||
Zeile 24: | Zeile 24: | ||
:<br /> | :<br /> | ||
:zu 2.) Alle Graphen haben die Punkte (-1;1) und (1;1) gemeinsam. | :zu 2.) Alle Graphen haben die Punkte (-1;1) und (1;1) gemeinsam. | ||
:* Begründung für Punkt (-1;1): Für den Fall <math>n=0</math> gilt <math>(-1)^0=1</math> nach | :* Begründung für Punkt (-1;1): Für den Fall <math>n=0</math> gilt <math>(-1)^0=1</math> nach Definition der Potenzen. Alle anderen Exponenten <math>\textstyle n \in \{2,4,6,8,10,...\}</math> sind Vielfache von 2, also von der Art <math>2 \cdot k</math> für alle <math>k \in {\Bbb N}</math>; dann gilt: <math>(-1)^n=(-1)^{2 \cdot k}= 1^k = 1</math> für alle <math>k \in {\Bbb N}.</math> | ||
:* Begründung für Punkt (1;1): Für beliebige <math>r \in {\Bbb R}</math> ist <math>1^r = r</math> und damit insbesondere für <math>r \in {\Bbb N}</math>. | :* Begründung für Punkt (1;1): Für beliebige <math>r \in {\Bbb R}</math> ist <math>1^r = r</math> und damit insbesondere für <math>r \in {\Bbb N}</math>. | ||
:<br /> | :<br /> | ||
:zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert. | :zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert. | ||
:: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die | :: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die Funktionswerte kleiner, an den Stellen x für <math>x< -1</math> bzw. <math>x > 1</math> werden die Funktionswerte größer. | ||
:<br /> | :<br /> | ||
:zu 4.) Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br> | :zu 4.) Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br> |
Version vom 22. April 2009, 07:03 Uhr
Die Graphen der Funktionen mit f(x) = xn, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
Die Datei [INVALID] wurde nicht gefunden. |
Teste dein Wissen
Die Graphen von f(x) = a xn, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
Vorlage:Arbeiten | Die Datei [INVALID] wurde nicht gefunden. |
Die Datei [INVALID] wurde nicht gefunden. |
Teste Dein Wissen
Als nächstes erfährst du etwas über Potenzfunktionen mit negativen ganzzahligen Exponenten. |