Ganzrationale Funktionen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karl Kirst
K (Kurzinfo (ohne Ziffer))
Main>Karl Kirst
K (Kasten blau/gelb -> blau/gelb)
Zeile 471: Zeile 471:
== '''Zusatzaufgabe''' ==
== '''Zusatzaufgabe''' ==


{{Kasten_blau|Falls du vor der vereinbarten Zeit mit der Bearbeitung des Lernpfades fertig sein solltest, entwirf ein kleines Funktionenbild oder -muster mithilfe von ganzrationalen Funktionen. Nutze dazu [http://www.geogebra.org GeoGebra].}}
{{blau|Falls du vor der vereinbarten Zeit mit der Bearbeitung des Lernpfades fertig sein solltest, entwirf ein kleines Funktionenbild oder -muster mithilfe von ganzrationalen Funktionen. Nutze dazu [http://www.geogebra.org GeoGebra].}}





Version vom 18. April 2018, 20:30 Uhr

Nuvola apps edu miscellaneous.png
Herzlich willkommen zum Lernpfad zu ganzrationalen Funktionen!

In unserer aktuellen Unterrichtseinheit geht es um Transformationen von verschiedenen Funktionen, d. h. also, ihr sollt herausarbeiten, mithilfe welcher Operationen bzw. Veränderungen in der Funktionsgleichung unterschiedliche Funktionsarten im Koordinatensystem verschoben, gestreckt bzw. gestaucht und gespiegelt werden können. In diesem Lernpfad sollst du dich nun speziell mit den ganzrationalen Funktionen auseinandersetzen.

Kompetenzen

Du kennst bereits:

  • verschiedene Begriffe / Eigenschaften im Zusammenhang mit Funktionen allgemein (Definitions- und Wertemenge, Symmetrie, ...),
  • lineare Funktionen allgemein und abschnittsweise definierte (lineare) Funktionen sowie
  • Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x- und auf der y-Achse, Streckung bzw. Stauchung in Richtung der x- und y-Achse sowie Spiegelungen an der x- und y-Achse).

Nach Bearbeitung dieses Pfades:

  • kennst du die ganzrationalen Funktionen als weitere Funktionenklasse.
  • kannst du wichtige Eigenschaften der ganzrationalen Funktionen erläutern.
  • weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
  • weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse strecken bzw. stauchen sowie an der x- und y-Achse spiegeln kannst.
  Und nun ....


Viel Spaß beim Bearbeiten!!


Vorlage:Kurzinfo

Infos vor Beginn

1) Lerntagebuch:
Während der gesamten Unterrichtseinheit sollst du ein Lerntagebuch führen: Das Tagebuch dient einerseits als "normales" Heft und andererseits als Reflexionsinstrument. Das heißt, du sollst nicht nur die gegebenen Arbeitsaufträge im Lerntagebuch bearbeiten, sondern dir darüber hinaus auch (schriftlich) Gedanken über deine Lernfortschritte und die Eignung des Arbeitsmaterials machen. Das Tagebuch wird nicht bewertet, es dient ausschließlich dazu, dir selbst klar zu machen, wie groß dein Lernfortschritt ist und wo vielleicht noch Probleme liegen.

Folgende Bestandteile sollte das Tagebuch haben:
1) Standortbestimmung: Was weiß ich bereits über Funktionstransformationen im Allgemeinen? Weiß ich bereits etwas über die zu bearbeitenden Funktionsarten?
2) Ein Eintrag nach jeder Stunde während der gesamten Unterrichtseinheit - mögliche Fragen, an denen du dich dabei orientieren kannst, sind:

  • Was habe ich gelernt? Was habe ich gut verstanden, welche Fragen sind noch offen? Welche Schwierigkeiten sind bei der Lösung aufgetreten?
  • An welchen Stellen habe ich etwas für mich Neues gelernt? Hatte ich Aha-Erlebnisse?
  • Bin ich mit meiner Arbeit zufrieden? Habe ich mein Arbeitsziel in dieser Stunde erreicht? Wenn nicht, woran lag es?
  • Wie habe ich mich in dieser Stunde im Unterricht oder in der Gruppenarbeit beteiligt? Welche Note würde ich mir geben?

3) Abschlusskommentar zu jeder Phase der Unterrichtseinheit:
4) Allgemeine Beurteilung der Einheit: Waren Aufbau und Material sinnvoll (speziell die Lernpfade)?
5) Abschlussprodukt: Funktionenbild mit Erläuterung


2) Allgemeine Hinweise:

  • Bearbeite den Lernpfad mit einem Partner oder einer Partnerin - so könnt ihr gemeinsam über die Aufgaben sprechen und schneller zu sinnvollen Ergebnissen gelangen.
  • Nutze die versteckten Hinweise erst, wenn du allein bzw. ihr zu zweit bei der Aufgabe nicht mehr weiter kommt - versucht es zuerst ohne Hilfe!
  • Für die versteckten Lösungen gilt: Schau sie dir erst an, wenn du die Aufgabe gelöst hast - sie dienen nur der Kontrolle!
  • Übernimm alle wichtigen Definitionen, Merksätze, Erläuterungen in dein Lerntagebuch - im Regelfall wirst du allerdings an der betreffenden Stelle explizit dazu aufgefordert.



Definition der ganzrationalen Funktionen

Eine kleine Aufgabe zum Einstieg:

Aufgabe 1
Du hast ein quadratisches Stück Karton mit der Seitenlänge 16 cm und möchtest eine Kiste (ohne Deckel) basteln. Dazu schneidest du an jeder Ecke des Kartons ein Quadrat der Seitenlänge x aus, so dass du die übriggebliebenen Seiten nur noch hochzuklappen brauchst - die Höhe der Kiste ist demzufolge definiert als x. Stelle eine Funktion für das Volumen auf (in Abhängigkeit von der Höhe x), das heißt, bestimme V(x). Fertige zuvor eine Skizze an.


Die Funktion, die du gerade aufgestellt hast, ist eine sogenannte ganzrationale Funktion - sie setzt sich zusammen aus den einzelnen Summanden , und , den Potenzfunktionen. Der höchste Exponent gibt den Grad der Funktion an, d. h. es handelt sich hier um eine ganzrationale Funktion dritten Grades. Die Vorfaktoren der einzelnen Summanden werden entsprechend den zugehörigen Exponenten von x mit - bezeichnet (, , ) - sie heißen Koeffizienten.

Nun in allgemeiner Form:

Definition

Ein Term der Form mit ; , , , ..., , und heißt Polynom. Die Zahlen , , , , ..., , nennt man Koeffizienten des Polynoms. Als Grad des Polynoms wird der höchste Exponent n von x bezeichnet, dessen zugehöriger Koeffizient nicht Null ist.
Eine Funktion f, deren Funktionswert f(x) als Polynom geschrieben werden kann, heißt ganzrationale Funktion.

Der Grad des Polynoms heißt auch Grad der ganzrationale Funktion. Die Definitionsmenge einer ganzrationalen Funktion ist die Menge der reellen Zahlen, also R.




Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam zum Üben:

  

Gegeben ist die Funktion .

1) Der

des Polynoms ist

, da 4 der höchste vorkommende Exponent ist.
2) Die

lauten wie folgt: =

, =

, =

, =

, =

. Der Index des jeweiligen a entspricht immer den

des zugehörigen x. Achte auf die

! Laut Definition kommen für die Koeffizienten alle

Zahlen in Frage, wundere dich also nicht, wenn in der Funktion z. B. eine Wurzel auftaucht.
3) Da für x alle möglichen Zahlen eingesetzt werden können, ist also hier entsprechend der Definition D =

.


Mit den folgenden Übungen kannst du überprüfen, ob du alles verstanden hast:

Aufgabe 2

Bestimme Grad und Koeffizienten der folgenden ganzrationalen Funktionen in deinem Lerntagebuch:
1)
2)
3)
4)

5)


1) Grad: 7, Koeffizienten:
2) Grad: 0, Koeffizienten:
3) Grad: 1, Koeffizienten:
4) Grad: 6, Koeffizienten: ,

5) Grad: 4, Koeffizienten: , , ,


Entscheide: Handelt es sich um eine ganzrationale Funktion? Begründe in deinem Lerntagebuch.

1

ja
nein

2

ja
nein

3

ja
nein

4 4)

ja
nein

5

ja
nein


Aufgabe 3
Nun weißt du genau, was eine ganzrationale Funktion ist. Übernimm die Definition in dein Lerntagebuch (sofern noch nicht geschehen) und erläutere sie an einem selbstgewählten Beispiel für eine Funktion dritten Grades. Zeichne auch den zugehörigen Graphen in dein Lerntagebuch - stelle dazu eine geeignete Wertetabelle auf.


Wichtige Eigenschaften ganzrationaler Funktionen

Aufgabe 4
Ordne die Funktionsgleichungen den jeweiligen Bildern zu. Begründe in deinem Lerntagebuch.


-2x - 1.jpg -10x^3 + 2x.jpg 2x^3 + 3x.jpg 2x^4 -x^2 + 3.jpg 5x^3 - 2x^2 - 3.jpg
-2x-1 -10x3+2x 2x3+3x 2x4-x2+3 5x3-2x2-3
X^2-x.jpg X1^3.jpg X1^4.jpg X^4-3x^2 - 2x - 2.jpg X^5 + 3x^2.jpg
x2-x x3 x4 x4-3x2-2x-2 x5+3x2
X^6 + x^2.jpg -x^3.jpg -x^4 + 3x^2.jpg -x^4.jpg
x6+x2 -x3 -x4+3x2 -x4



Im Folgenden sollst du die gerade geordneten Funktionen noch einmal genauer untersuchen hinsichtlich möglicher Symmetrien sowie ihrem Verhalten für sehr große und sehr kleine x (Verhalten im Unendlichen):


Symmetrie

Aufgabe 5
Bei welcher der Funktionen kannst du eine Symmetrie erkennen (Punktsymmetrie zum Ursprung oder Achsensymmetrie zur y-Achse)? Gruppiere die Funktionen bzw. die Funktionsgleichungen entsprechend in drei Gruppen (Punktsymmetrie, Achsensymmetrie, keine Symmetrie). Formuliere einen Merksatz, woran man eine mögliche Symmetrie an der Funktionsgleichung erkennen kann.


Vorlage:Versteckt

Merke

Der Graph einer ganzrationalen Funktion f verläuft genau dann

  • achsensymmetrisch zur y-Achse, wenn f(x) nur Potenzen mit geraden Exponenten enthält.
  • punktsymmetrisch zum Ursprung, wenn f(x) nur Potenzen mit ungeraden Exponenten enthält.



Verhalten im Unendlichen / Verlauf des Graphen

Aufgabe 6

Wie verhalten sich die verschiedenen Graphen

  • für sehr große x-Werte?
  • für sehr kleine x-Werte?
Gruppiere die Funktionen begründet entsprechend ihres Verhaltens und formuliere in deinem Lerntagebuch einen Merksatz, woran man das Verhalten der Funktion für sehr große bzw. sehr kleine x-Werte ablesen kann.


Vorlage:Versteckt

Merke
Das Verhalten einer ganzrationalen Funktion f für sehr große x wird von dem Summanden mit der höchsten Potenz von x, d. h. dem Summanden mit dem höchsten Exponenten, bestimmt. Der Graph zur Funktion verhält sich also wie der Graph zur Funktion y = , wobei n der Grad von f ist.


Aufgabe 7

Betrachte die folgenden Graphen:


Beschreibe jeweils den Verlauf der 5 bzw. 6 Graphen. Wie beeinflussen die weiteren Summanden den Verlauf des Graphen zu bzw. , d. h. ändert sich das Gesamtbild?


Merke
Der Graph zur Funktion verhält sich so wie der Graph zur Funktion y = , wobei n der Grad von f ist. Alle weiteren Summanden beeinflussen den Verlauf nur geringfügig.


Mithilfe der folgenden Übung kannst du Verlauf und Symmetrie von ganzrationalen Funktionen untersuchen und so überprüfen, ob du alles verstanden hast. Fasse anschließend deine Erkenntnisse in der Pdf20.gif Tabelle zusammen.

Transformationen

Die ganzrationalen Funktionen, die du in diesem Lernpfad kennen gelernt hast, weisen bestimmte Transformationen auf, d. h. die Funktionsgleichung gibt an, inwiefern der Graph gestreckt oder gestaucht, in Richtung der x- oder y-Achse verschoben oder an einer der beiden Achsen gespiegelt ist.

Mit zwei Arten von ganzrationalen Funktionen hast du dich in den vergangenen Wochen im Unterricht bereits näher beschäftigt, und zwar mit den linearen und den quadratischen Funktionen. Dabei handelt es sich um nichts anderes als um ganzrationale Funktionen ersten und zweiten Grades. Eine lineare Funktion wird entsprechend der Definition als Polynom folgendermaßen geschrieben: - der zugehörige Graph heißt - wie du weißt - Gerade. Die dementsprechende Schreibweise der quadratischen Funktionen sieht folgendermaßen aus: (Normalform) - der zugehörige Graph heißt Parabel.

Aufgabe 8

Skizziere und beschreibe das Aussehen von

  • Geraden und
  • Parabeln
in deinem Lerntagebuch. Erläutere jeweils den Einfluss der Koeffizienten auf die Graphen, sofern dieser eindeutig zu erkennen ist.


Im Folgenden sollst du dich genauer mit Verschiebungen, Streckungen / Stauchungen und Spiegelungen von ganzrationalen Funktionen (speziell dritten und vierten Grades) beschäftigen. Los geht es aber mit den einfachsten ganzrationalen Funktionen - den Geraden. Mit verschiedenen Aspekten im Zusammenhang mit linearen Funktionen hast du dich im Unterricht zwar schon beschäftigt, aber noch nicht mit Transformationen von Geraden im Koordinatensystem. Das sollst du nun nachholen:

Aufgabe 9

Gegeben ist eine lineare Funktion mit . Das folgende Bild zeigt dir verschiedene Transformationen dieser Gerade. Bestimme jeweils eine Funktionsgleichung der neuen Gerade und erläutere kurz in deinem Lerntagebuch, durch welche Veränderung in der Funktionsgleichung du die neue Gleichung entwickeln kannst.
Transformationen lineare Funktion.jpg

Stelle anschließend allgemein zusammen, durch welche Veränderung in der Funktionsgleichung f(x) = a1x + a0 du die jeweilige Transformation, d. h.

  • eine Streckung in Richtung der y-Achse um den Faktor a,
  • eine Spiegelung des Funktionsgraphen an der x-Achse,
  • eine Verschiebung in Richtung der y-Achse um e
  • eine Verschiebung in Richtung der x-Achse um d

darstellen kannst. Du kannst deine Vermutungen mit verschiedenen Beispielen in GeoGebra überprüfen.

Kannst du in einer Gleichung zusammenfassen: Streckung in Richtung der y-Achse um a, Verschiebung in Richtung der y-Achse um e, Verschiebung in Richtung der x-Achse um d? Formuliere einen Satz, der Auskunft darüber gibt, wie du eine lineare Funktion an der x-Achse spiegeln kannst.


f(x) = a(a1x - d) + (a0 + e). Eine Spiegelung an der x-Achse kann erreicht werden durch die Multiplikation der gesamten Funktion mit (-1).


Eine Transformationsart, die bislang noch nicht betrachtet wurde, ist die Streckung / Stauchung in Richtung der x-Achse.

Aufgabe 10
Eine Streckung bzw. Stauchung in Richtung der x-Achse kann erreicht werden durch Bilden von f(cx) mit einem gegebenen Wert für c, d. h. überall dort, wo in der Funktionsgleichung ein x steht, wird bx eingesetzt und aufgelöst. Untersuche, für welche Werte von c sich die drei Möglichkeiten ergeben: Streckung, Stauchung, keine Veränderung. Nimm die Funktion f(x) und experimentiere mit GeoGebra. Beschreibe deine Versuche und Ergebnisse kurz in deinem Lerntagebuch.


Folgende Fälle lassen sich unterscheiden:

  • -1 < c < 1: Streckung in Richtung der x-Achse; dazu kommt für negative Werte die Spiegelung an der y-Achse
  • c = 1: keine Veränderung, im negativen Fall nur Spiegelung an der y-Achse
  • c < -1 bzw. c > 1: Stauchung in Richtung der x-Achse; dazu kommt für negative Fälle die Spiegelung an der y-Achse

Automatisch hast du jetzt also auch schon die Spiegelung an der y-Achse als weitere Transformationsart mit bearbeitet.

Aufgabe 11

Untersuche den Graphen zu . Bilde g(x) = f(cx) mit c = 4 und zeichne beide Geraden in dein Lerntagebuch. Untersuche, ob du einen anderen Weg findest, um mithilfe von bereits bekannten Transformationen ausgehend von f(x) zu g(x) zu gelangen. Erläutere in deinen Lerntagebuch. Wenn du möchtest, kannst du zur zeichnerischen Überprüfung GeoGebra nutzen.

Formuliere abschließend: Ist es notwendig, im Zusammenhang mit linearen Funktionen die Streckung in Richtung der x-Achse gesondert zu betrachten?
Es ist möglich, zu g(x) zu gelangen, indem man f(x) mit dem Faktor 4 in Richtung der y-Achse streckt und um auf der y-Achse verschiebt. Demzufolge ist es bei linearen Funktionen nicht notwendig, die Streckung / Stauchung in Richtung der x-Achse gesondert zu betrachten. Um eine Spiegelung an der y-Achse hervorzurufen, gibt es allerdings keine andere Möglichkeit.


Aufgabe 12

Mit den quadratischen Funktionen und möglichen Transformationen haben wir uns im Unterricht bereits ausführlich beschäftigt, allerdings haben wir dabei hauptsächlich die Scheitelpunktform betrachtet. Nun sollst du dich mit der Normalform auseinandersetzen und überprüfen, inwiefern du an dieser Schreibweise der Funktionsgleichung Transformationen ablesen kannst.
Zuvor erstmal eine kurze Wiederholung: Wie hängen Scheitelpunktform und Normalform einer quadratischen Funktion zusammen? Wähle eine Beispielfunktion in Scheitelpunktform. Gib anschließend die zugehörige Normalform an. Wie gehst du vor, um die Normalform zu erhalten? Überprüfe dein Ergebnis, indem du beide Funktionen zeichnest - hast du richtig gerechnet? GeoGebra.
Überführe die Normalform anschließend rechnerisch zurück in die Scheitelpunktform. ..... Na, geschafft? Falls nicht, kleiner Tipp: Quadratische Ergänzung!!!.


Du siehst also, Scheitelpunktform und Normalform sind nur zwei verschiedene Darstellungsformen für ein und dieselbe Funktionsgleichung. Beide Varianten können beliebig ineinander überführt werden.



Die Überführung der Normalform in die Scheitelpunktform ist allerdings nur bei quadratischen Funktionen so einfach möglich. Ganzrationale Funktionen mit n > 2 werden im Regelfall in Polynomschreibweise angegeben und lassen sich nicht in eine Art "Scheitelpunktform" überführen, an der alle Transformationsarten ablesbar sind.
Auch für die Funktionen mit n > 2 gibt es eine Art "Scheitelpunktform", also eine Funktionsgleichung, an der direkt die verschiedenen Transformationen abgelesen werden können. Aber diese Gleichung kann nicht wie bei den quadratischen Funktionen durch die quadratische Ergänzung aus der Polynomschreibweise hergeleitet werden - man kann lediglich diese "Scheitelpunktform" durch Ausmultiplizieren in die Polynomschreibweise überführen. Beide Schreibweisen werden im Rahmen der Unterrichtseinheit betrachtet - ihr sollt euch mit der etwas schwierigeren Polynomschreibweise auseinandersetzen, während die andere Darstellungsform von der Gruppe "Potenzfunktionen" bearbeitet wird.
Du hast ja bereits herausgefunden, wie die verschiedenen Transformationen sich bei linearen Funktionen (also den einfachsten der ganzrationalen Funktionen) in die Funktionsgleichung einbauen lassen; im Folgenden sollst du versuchen, dein Wissen bezüglich der einzelnen Transformationsarten auf ganzrationale Funktionen zweiten, dritten und vierten Grades zu übertragen.

Beginnen wir mit der Streckung bzw. Stauchung in Richtung der y-Achse:

Aufgabe 13

Du siehst auf dem folgenden Bild zwei Funktionsgraphen: f(x) ist die Ausgangsfunktion mit der angezeigten Funktionsgleichung - g(x) ist demgegenüber in Richtung der y-Achse gestreckt. Bestimme die Funktionsgleichung zu g(x).
Streckung in y-Richtung quadratisch.jpg

  • Bestimme zuerst den Faktor a, mit dem du f(x) strecken oder stauchen musst, um g(x) zu erhalten.
  • Durch welche mathematische Operation kannst du nun zur Funktionsgleichung von g(x) kommen?
  • Welche Punkte des Graphen verändern sich durch eine Streckung in Richtung der y-Achse, welche nicht?
  • Stauche f(x) um den Faktor a = . Wie lautet die Funktionsgleichung zur neuen Funktion h(x)? Überprüfe mit dem GeoGebra-Link unten.


  • Überprüfe mithilfe des Links, ob deine Erkenntnisse sich auch auf Funktionen dritten und vierten Grades übertragen lassen. Welche Fälle für a lassen sich unterscheiden? Wähle für jeden Fall zwei entsprechende Beispiele und überprüfe - notiere in deinem Lerntagebuch. Was ändert sich im Fall a < 0?
  • Formuliere einen Merksatz, der erklärt, wie du eine beliebige ganzrationale Funktion mit einem Faktor strecken oder stauchen kannst (Wie muss der Faktor jeweils aussehen?). Welche Punkte des Graphen werden durch eine Streckung / Stauchung nicht verändert?
Falls du nicht weiter weißt, nutze den versteckten Hinweis. Falls du zeichnerisch ausprobieren möchtest, kannst du das hier tun: GeoGebra.


Vorlage:Versteckt

Merke

Eine Streckung bzw. Stauchung einer ganzrationalen Funktion wird erreicht durch die Multiplikation der gesamten Funktion mit dem Streckfaktor a. Für a lassen sich drei verschiedene Fälle unterscheiden:

  • -1 < a < 1: Es handelt sich um eine Stauchung; im Falle eines negativen Streckfaktors kommt eine Spiegelung an der x-Achse hinzu.
  • a = 1: Die Funktionsgleichung ändert sich nicht, es handelt sich weder um eine Stauchung noch um eine Streckung.
  • a > 1 bzw. a < -1: Es handelt sich um eine Streckung. Für negatives a ist es zusätzlich eine Spiegelung an der x-Achse.
Durch eine Streckung oder Stauchung ändern sich alle Werte der Funktion mit Ausnahme der Nullstellen - Nullstellen bleiben von Streckungen (bzw. Stauchungen) in Richtung der y-Achse grundsätzlich unberührt.


Mit Bearbeitung dieser Aufgabe hast du bereits implizit die Spiegelung an der x-Achse mit untersucht und damit bereits eine weitere Transformationsart "abgehakt".

Weiter geht es mit den Verschiebungen in Richtung der beiden Achsen:
Der Abwechselung halber betrachten wir nun eine Funktion 3. Grades.

Aufgabe 14

Beschreibe anhand des folgenden Bildes kurz in deinem Lerntagebuch, wie der Graph zu g aus dem Graphen zu f hervorgeht.

Verschiebungen bei ganzrationalen Funktionen.jpg
Gegeben sind die Funktionsgleichungen

Wo finden sich die Verschiebungen in der Funktionsgleichung wieder? Kannst du eine Gleichung der Form g(x) = ... aufstellen, in der du allgemein f(x) nutzt (anstatt ) und die ausdrückt, dass f um 3 Einheiten in Richtung der x-Achse und um 2 Einheiten in Richtung der y-Achse verschoben ist?


Vorlage:Versteckt

Aufgabe 15
Formuliere einen Merksatz, indem du erläuterst, wie sich eine Verschiebung um e in Richtung der y-Achse und eine Verschiebung um d in Richtung der x-Achse bei ganzrationalen Funktionen in der Funktionsgleichung darstellen lassen.


Merke
Eine Verschiebung um d in Richtung der x-Achse lässt sich darstellen durch (x - d), das überall dort in die Funktionsgleichung eingesetzt wird, wo vorher ein x stand. Eine Verschiebung um e in Richtung der y-Achse lässt sich darstellen durch das Anhängen von e an die gesamte Gleichung. Formal kann diese Verschiebung des Graphen um (d / e) ausgedrückt werden durch g(x) = f(x - d) + e.


Nun ein konkretes Beispiel:

Aufgabe 16
Gegeben ist eine Funktion . Der Graph soll verschoben werden um +2 in x-Achsenrichtung und +3 in y-Achsenrichtung. Bestimme die verschobene Funktion g(x). Benenne Grad und Koeffizienten von g und zeichne beide Graphen in dein Lerntagebuch.


Vorlage:Versteckt



Zum Abschluss noch die Streckung / Stauchung in Richtung der x-Achse:

Aufgabe 17

Versuche, deine Kenntnisse bezüglich Streckung in x-Achsenrichtung bei linearen und quadratischen Funktionen zu übertragen auf ganzrationale Funktionen im Allgemeinen: Gegeben ist die Funktion .

  • Wie kannst du den Streckungs- bzw. Stauchungsfaktor in die Gleichung einbauen? Zeichne die Funktionen mit GeoGebra. Handelt es sich um eine Streckung oder um eine Stauchung in Richtung der x-Achse?
  • Überprüfe deine Ergebnisse bzgl. der möglichen Fälle für c aus Aufgabe 8 - sind sie übertragbar auf ganzrationale Funktionen im Allgemeinen? Wähle je drei Beispiele für eine Streckung, Stauchung und eine reine Spiegelung an der y-Achse für Funktionen 3. und Funktionen 4. Grades - skizziere die Graphen in deinem Lerntagebuch. Zur Überprüfung: GeoGebra.
  • Untersuche, ob die Betrachtung dieser Transformationsart auch bei ganzrationalen Funktionen im Allgemeinen durch andere Transformationsarten ersetzt werden kann.


  • Die Fallbetrachtungen für c können übertragen werden.
  • Prinzipiell sind die Transformationsarten auch bei ganzrationalen Funktionen im Allgemeinen durcheinander ersetzbar, aber in der Polynomschreibweise ist es kaum möglich, dies ohne weiteres zu sehen und einzubauen.



Übungen


Aufgabe 18

Der Graph zu soll transformiert werden. Gib jeweils den Funktionsterm zu dem neuen Graphen an.

  • Verschiebung um -2 in y-Richtung
  • Verschiebung um 2 Einheiten in x-Richtung nach rechts
  • Streckung in y-Richtung mit Faktor 2
  • Streckung in y-Richtung mit dem Faktor 4 und Spiegelung an der x-Achse.


  • Verschiebung um -2 in y-Richtung:
  • Verschiebung um 2 Einheiten in x-Richtung nach rechts:
  • Streckung in y-Richtung mit Faktor 2:
  • Streckung in y-Richtung mit dem Faktor 4 und Spiegelung an der x-Achse:


Aufgabe 19
Je eine Funktionsgleichung aus Gruppe 1 und eine aus Gruppe 2 beschreiben den gleichen Graphen - sortiere sie entsprechend zusammen und erläutere kurz, warum sie zusammen gehören:
Gruppe 1 Gruppe 2



Aufgabe 20

Gegeben ist f(x) = x3 + x2. Der Graph von g geht aus dem Graphen von f durch Verschiebung hervor. Zeichne die Graphen von f und g mit GeoGebra und bestimme damit für g eine Darstellung der Form g(x) = (x - d)3 + (x - d)2 + b.
a) g(x) = x3 - 5x2 + 8x - 1

  g(x) = ?

b) g(x) = x3 + 4x2 + 5x - 4

  g(x) = ?

c) g(x) = x3 - 35x2 + 408x - 1569

g(x) = ?

a) g(x) = (x - 2)3 + (x - 2)2 + 3
b) g(x) = (x + 1)3 + (x + 1)2 - 6

c) g(x) = (x - 12)3 + (x - 12)2 + 15

Zusammenfassung

Aufgabe 21
Fasse zusammen, was du über Transformationen von ganzrationalen Funktionen gelernt hast. Erstelle mithilfe der Pdf20.gif Tabelle eine Liste mit den Transformationsarten und der jeweiligen Einbindung in die Funktionsgleichung.



Zusatzaufgabe

Falls du vor der vereinbarten Zeit mit der Bearbeitung des Lernpfades fertig sein solltest, entwirf ein kleines Funktionenbild oder -muster mithilfe von ganzrationalen Funktionen. Nutze dazu GeoGebra.

<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Ganzrationale Funktionen,Mathematik,Ganzrationale Funktion,Funktionen,11. Klasse,Oberstufe,Lernpfad</metakeywords>