Ganzrationale Funktionen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>MarinaMueller
Keine Bearbeitungszusammenfassung
Main>MarinaMueller
KKeine Bearbeitungszusammenfassung
Zeile 17: Zeile 17:
* abschnittsweise definierte (lineare) Funktionen
* abschnittsweise definierte (lineare) Funktionen
* Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x-Achse, Verschiebung auf der y-Achse,  Streckung bzw. Stauchung in Richtung der y-Achse)
* Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x-Achse, Verschiebung auf der y-Achse,  Streckung bzw. Stauchung in Richtung der y-Achse)
* Sinus, Kosinus und Tangens im Zusammenhang mit rechtwinkligen Dreiecken, d. h. für Winkel zwischen 0° und 90°
|align=left valign=top width=50%|
|align=left valign=top width=50%|
Nach Bearbeitung dieses Pfades:  
Nach Bearbeitung dieses Pfades:  
Zeile 23: Zeile 22:
* kennst du wichtige Eigenschaften der ganzrationalen Funktionen.
* kennst du wichtige Eigenschaften der ganzrationalen Funktionen.
* weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
* weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
* weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse stauchen sowie an der x-Achse spiegeln kannst.
* weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse stauchen sowie an der x-Achse spiegeln kannst.
|}
|}
<br>
<br>
Zeile 70: Zeile 69:
Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam am Beispiel:  
Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam am Beispiel:  
<br>
<br>
<div_class="lueckentext-quiz">
 
<quiz>
{ Gegeben ist die Funktion <math>f(x) = 0.5x^4 + 3x^3 + 7x^2 - 1.3x - 18</math>.
| type="{}" }
1) Der { Grad } der Polynoms ist { 4 }, da 4 der höchste vorkommende Exponent ist. <br>
2) Die { Koeffizienten } lauten wie folgt: <math>a_4 = { 0.5 }</math>, <math>a_3 = { 3 }</math>, <math>a_2 = { 7 }</math>, <math>a_1 = { -1.3 }</math>, <math>a_0</math> = { -18 }. Der Index des jeweiligen a entspricht immer den Exponenten des zugehörigen x.
</quiz>





Version vom 8. November 2010, 16:58 Uhr

Nuvola apps edu miscellaneous.png
Herzlich willkommen zum Lernpfad zu ganzrationalen Funktionen!

In unserer aktuellen Unterrichtseinheit geht es um Transformationen von Funktionen, d. h. also, ihr sollt herausarbeiten, mithilfe welcher Operationen bzw. Veränderungen in der Funktionsgleichung unterschiedliche Funktionsarten im Koordinatensystem 'verschoben' werden können. In diesem Lernpfad sollst du dich nun speziell mit den ganzrationalen Funktionen auseinandersetzen.


Kompetenzen

Du kennst bereits:

  • verschiedene Begriffe / Eigenschaften im Zusammenhang mit Funktionen allgemein (Definitions- und Wertemenge, Symmetrie, ...)
  • abschnittsweise definierte (lineare) Funktionen
  • Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x-Achse, Verschiebung auf der y-Achse, Streckung bzw. Stauchung in Richtung der y-Achse)

Nach Bearbeitung dieses Pfades:

  • weißt du, was ganzrationale Funktionen sind.
  • kennst du wichtige Eigenschaften der ganzrationalen Funktionen.
  • weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
  • weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse stauchen sowie an der x-Achse spiegeln kannst.


  Und nun ....


Viel Spaß beim Bearbeiten!!

Infos vor Beginn

Während der gesamten Unterrichtseinheit sollst du ein Lerntagebuch führen: Das Tagebuch dient einerseits als "normales" Heft und andererseits als Reflexionsinstrument. Das heißt, du sollst nicht nur die gegebenen Arbeitsaufträge im Lerntagebuch bearbeiten, sondern dir darüber hinaus auch (schriftlich) Gedanken über deine Lernfortschritte und die Eignung des Arbeitsmaterials machen. Das Tagebuch wird nicht bewertet, es dient ausschließlich dazu, dir selbst klar zu machen, wie groß dein Lernfortschritt ist und wo vielleicht noch Probleme liegen.
Mögliche Fragen, an denen du dich dabei orientieren kannst, sind:



Mache spätestens nach jeder Stunde einen Eintrag ins Lerntagebuch und reflektiere über deine Arbeit in der Unterrichtseinheit.

Allgemeine Hinweise:

  • Bearbeite den Lernpfad mit einem Partner oder einer Partnerin - so könnt ihr gemeinsam über die Aufgaben sprechen und schneller zu sinnvollen Ergebnissen gelangen.
  • Übernimm alle wichtigen Definitionen, Merksätze, Erläuterungen in dein Lerntagebuch - im Regelfall wirst du allerdings an der betreffenden Stelle explizit dazu aufgefordert.
  • ...



Definition der ganzrationalen Funktionen

Eine kleine Aufgabe zum Einstieg:
Vorlage:Arbeiten


Die Funktion, die du gerade aufgestellt hast, ist eine sogenannte ganzrationale Funktion - sie setzt sich zusammen aus den einzelnen Summanden Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 4x^3, 52x^2 und 256x^} , den Potenzfunktionen. Der höchste Exponent gibt den Grad der Funktion an, d. h. es handelt sich hier um eine ganzrationale Funktion dritten Grades. Die Vorfaktoren der einzelnen Summanden werden entsprechend den zugehörigen Exponenten von x mit bezeichnet () - sie heißen Koeffizienten.

Nun in allgemeiner Form:

Definition

Ein Term der Form heißt Polynom. Die Zahlen nennt man Koeffizienten des Polynoms. Als Grad des Polynoms wird der höchste Exponent n von x bezeichnet, dessen zugehöriger Koeffizient nicht Null ist.
Eine Funktion f, deren Funktionswert f(x) als Polynom geschrieben werden kann, heißt ganzrationale Funktion.

Der Grad des Polynoms heißt auch Grad der ganzrationale Funktion. Die Definitionsmenge einer ganzrationalen Funktion ist die Menge der reellen Zahlen, also R.





Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam am Beispiel:

  

Gegeben ist die Funktion .

1) Der

der Polynoms ist

, da 4 der höchste vorkommende Exponent ist.
2) Die

lauten wie folgt: , , , , =

. Der Index des jeweiligen a entspricht immer den Exponenten des zugehörigen x.





Wichtige Eigenschaften ganzrationaler Funktionen

Transformationen

Bislang hast du dich lediglich mit den sogenannten "Grundfunktionen" der Potenzfunktionen beschäftigt. Nun sollst du dich näher mit möglichen Transformationen, d. h. Verschiebungen, Streckungen und Stauchungen sowie Spiegelungen von Potenzfunktionen beschäftigen.
Um die Anzahl der jeweils zu untersuchenden Funktionen überschaubar zu halten, werden auch an dieser Stelle die verschiedenen Arten von Exponenten getrennt betrachtet.

Potenzen mit positiven ganzzahligen Exponenten

Erinnere dich zurück an die quadratischen Funktionen: Dort hast du mit der Normalparabel als "Grundfunktion" gearbeitet und inzwischen weißt du, wie diese Grundfunktion transformiert werden kann. Es handelt sich hierbei - wie du weißt - bereits um ein Beispiel für eine Potenzfunktion mit einem positiven ganzzahligen Exponenten. Bevor du dich mit anderen Exponenten beschäftigst, wiederhole kurz dein Wissen für den Fall a = 2:
Vorlage:Arbeiten



Nun sollst du versuchen, diese Informationen auch auf größere Exponenten zu übertragen:

Vorlage:Arbeiten

Vorlage:Arbeiten

Eine solche allgemeine Gleichung lautet: . Eine Spiegelung kannst du erreichen durch .


Die einzige Transformationsart, die bislang noch nicht betrachtet wurde, ist die Streckung bzw. Stauchung in Richtung der x-Achse:
Vorlage:Arbeiten

Nun weißt du, wie Potenzfunktionen 2. und 3. Grades im Koordinatensystem bewegt werden können. Sind diese Erkenntnisse übertragbar auf alle positiven Exponenten?
Vorlage:Arbeiten

Vorlage:Arbeiten

Potenzen mit negativen ganzzahligen Exponenten

Vorlage:Arbeiten

Potenzen mit rationalen Exponenten

Vorlage:Arbeiten
Gesamtergebnis: Vorlage:Versteckt

Zusammenfassung

Vorlage:Arbeiten

Übungen

???

Zusatzaufgabe

{{Kasten_blau|Falls du vor der vereinbarten Zeit mit der Bearbei