Zylinder Pyramide Kegel/Zusatzaufgaben: Unterschied zwischen den Versionen
Main>Karl Kirst |
Main>Karl Kirst K (Karl Kirst verschob Seite Benutzerin:Christine Staudermann/Unterrichtsmaterialien/Lernpfad: Inhalt und Drumherum/Zusatzaufgaben nach Mathematik-digital/Inhalt und Drumherum/Zusatzaufgaben: fertiger Lernpfad) |
(kein Unterschied)
|
Version vom 22. März 2016, 14:19 Uhr
Auf dieser Seite findest du zu jeder Lerneinheit (Zylinder, Satz von Cavalieri, Pyramide und Kegel) noch weitere Übungsaufgaben, mit denen du dein neu erworbenes Wissen festigen und weiter vertiefen kannst.
Die Bearbeitung der einzelnen Lerneinheiten und der darin enthaltenen Übungsaufgaben haben erste Priorität. Diese Zusatzaufgaben sind als freiwillige Übung gedacht und sollten daher außerhalb der Unterrichtszeit bearbeitet werden (außer du bist schon mit allen Lerneinheiten fertig).
Berechnungen am Zylinder
S.20 Nr.7:
Nr.7a)
Möglichkeit 1: a=U, b=h
Möglichkeit 2: b=U, a=h
Nr.7b)
Satz von Cavalieri
Wir betrachten zwei Quader, die die Kriterien von Cavalieri erfüllen (gleicher Grundflächeninhalt, gleiche Höhe, in gleicher Höhe gleichen Flächeninhalt der Schnittflächen). Der Grundflächeninhalt beträgt .
Der Oberflächeninhalt berechnet sich aus dem doppelten Grundflächeninhalt und dem Mantelflächeninhalt. Die Grundflächen unserer beiden Körper sind flächengleich. Wie sieht es aber mit den Mantelflächeninhalten aus?
Flächengleichheit bedeutet nicht, dass auch der Umfang gleich ist!
Im gewählten Beispiel wäre der Mantelflächeninhalt des linken Quaders und des rechten Quaders
Fazit: Der Satz von Cavalieri gilt nicht für den Oberflächeninhalt entsprechender Körper, da die Mantelflächen von verschiedenen Körpern nicht gleich groß sind, auch wenn Grundflächeninhalt und Höhe gleich sind!
Berechnungen an der Pyramide
Für zwei gerade Pyramiden mit gleicher Höhe und gleich großer Grundfläche wurde die Volumengleichheit über die zentrische Streckung nachgewiesen. Bei der schiefen Pyramide wird ebenfalls die Grundfläche (in der Abbildung die Grundlinie) auf die Schnittfläche durch eine zentrische Streckung mit der Pyramidenspitze als Streckzentrum abgebildet. Für den Streckfaktor gilt (Strahlensatzfigur).
Es gilt für die Flächeninhalte der Schnittflächen: und
wegen