Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Glücksspiel: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Florian Bogner |
Main>Florian Bogner |
||
Zeile 38: | Zeile 38: | ||
{{Aufgaben-M|2.1|Berechne die Wahrscheinlichkeiten der Ereignisse '''E<sub> | {{Aufgaben-M|2.1|Berechne die Wahrscheinlichkeiten der Ereignisse '''E<sub>2</sub>: „Augensumme ist 2“''' bis '''E<sub>12</sub>: „Augensumme ist 12“'''.}} | ||
{{Lösung versteckt|Die Ergebnismenge und damit die Anzahl der günstigen Ergebnisse kennst du bereits von Aufgabe 1.8 aus dem ersten Teil des Lernpfads. | {{Lösung versteckt|Die Ergebnismenge und damit die Anzahl der günstigen Ergebnisse kennst du bereits von Aufgabe 1.8 aus dem ersten Teil des Lernpfads. |
Version vom 3. September 2009, 19:06 Uhr
„Gustavs Glücksspiel“
Aufgabe
Scheinbar sagt Gustav nicht die ganze Wahrheit. Seine Rechnung kann nicht stimmen. Löse die nächsten Aufgaben um die Wahrheit herauszufinden!
Die Ergebnismenge und damit die Anzahl der günstigen Ergebnisse kennst du bereits von Aufgabe 1.8 aus dem ersten Teil des Lernpfads.
So sehen die Ereignisse aus:
Die Wahrscheinlichkeiten sind:
Das Gegenereignis tritt ein, wenn E5, E6, E7, oder E8 eintritt.
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \Rightarrow \quad p(G)=1-p(\overline G)= \frac{4}{9}=44{,}\overline 4 \ %}
Also gibt Gustav die Gewinnwahrscheinlichkeit viel höher an als sie tatsächlich ist. Du kannst natürlich trotzdem mitspielen, solltest aber keinen zu hohen Einsatz wählen, da Gustav die besseren Chancen hat.