Die Winkelhalbierende: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
K (Kilian Schoeller verschob die Seite Mathematik-digital/Die Winkelhalbierende nach Die Winkelhalbierende)
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
{{Kurzinfo|M-digital}}
__NOTOC__
<table><tr><td><font><b><u>Materialien:</u><br>1. {{pdf|AB1_Winkelhalbierende.pdf|Arbeitsblatt zur Winkelhalbierenden}} und<br>2. [[Bild:Tonpapier.png|25 px]] orange-farbenes gleichschenkliges Dreieck (Tonpapier)</b></font></td><td></td><td></td></tr></table><br>
= <br>Die Winkelhalbierende =
<table><tr><td> [[Bild:Maxmoritz.jpg|150 px|left]]</td><td></td><td></td><td></td><td>


''Max und Moritz - welch' zwei Knaben,''<br>
<h4><u>Materialien:</u>
''die sich sehr an Scherzen laben,''<br>
*{{pdf|AB1_Winkelhalbierende.pdf |Arbeitsblatt zur Winkelhalbierenden}} und
''sind an ihrem Lieblingsort,''<br>
*[[Bild:Tonpapier.png|30px]] orange-farbenes gleichschenkliges Dreieck (Tonpapier)</h4>
''ganz weit von den Eltern fort.''<br>
 
''Im Dachgeschoss, das ich da mein',''<br>
=Die Winkelhalbierende =
''fehlt der rechte Lichterschein.''<br>
 
''Sie beschließen ganz geschwind, ''<br>
 
''weil sie so geschickt doch sind ''<br>
<div class="grid">
''mitten in des Daches Gängen ''<br>
<div class="width-1-3">[[Bild:Maxmoritz.jpg|150 px|left]]</div>
''soll die große Lampe hängen.''<br></td><td></td><td></td><td></td><td align="center"><div align="center">'''Haus von Max und Moritz <br>mit zwei gleichgeneigten Dachflächen'''</div><br>[[Bild:Hausdach.jpg|250px|middle]]</td></tr></table>
<div class="width-1-3">
<br>
''Max und Moritz - welch' zwei Knaben,''<br>
<br>
''die sich sehr an Scherzen laben,''<br>
<table><tr><td>'''Arbeitsaufträge:'''<br>
''sind an ihrem Lieblingsort,''<br>
''ganz weit von den Eltern fort.''<br>
''Im Dachgeschoss, das ich da mein',''<br>
''fehlt der rechte Lichterschein.''<br>
''Sie beschließen ganz geschwind, ''<br>
''weil sie so geschickt doch sind ''<br>
''mitten in des Daches Gängen ''<br>
''soll die große Lampe hängen.''<br>
</div>
<div class="width-1-3">'''Haus von Max und Moritz <br>mit zwei gleichgeneigten Dachflächen'''<br>
[[Bild:Hausdach.jpg|250px|middle]]
</div>
</div>
 
 
 
{{Box|1=Aufgabe|2=
<div class="grid">
<div class="width-5-6">
# Nimm das [[Bild:Tonpapier.png|20px]] orange-farbene gleichschenklige Dreieck aus Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
# Nimm das [[Bild:Tonpapier.png|20px]] orange-farbene gleichschenklige Dreieck aus Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
# Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dachflächen auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!<br>
# Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dachflächen auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!<br>
# Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der '''[http://www.hirnwindungen.de/wunderland/grundkons/winkelhalb.html Winkelhalbierenden]'''!</td><td>[[Bild:Tonpapier.png|250px|middle]]</td></tr></table>
# Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der '''[http://www.hirnwindungen.de/wunderland/grundkons/winkelhalb.html Winkelhalbierenden]'''!</div>
<br>
<div class="width-1-6">[[Bild:Tonpapier.png|250px|middle]]</div>
<br>
</div>
|3=Arbeitsmethode}}
 
 


== Was ist eine Winkelhalbierende? ==
== Was ist eine Winkelhalbierende? ==
Zeile 43: Zeile 61:


== Konstruktion der Winkelhalbierenden ==
== Konstruktion der Winkelhalbierenden ==
=== Konstruktionsschritte ===
{{Box|1=Aufgabe - Konstruktionsschritte|2=
'''Arbeitsauftrag:'''
# Konstruiere mit Zirkel und Lineal die Winkelhalbierende auf Deinem Arbeitsblatt!
# Konstruiere mit Zirkel und Lineal die Winkelhalbierende auf Deinem Arbeitsblatt!
# Notiere die besprochenen '''{{pdf|Konstruktion_Winkelhalbierenden.pdf|Konstruktionsschritte}}''' auf Dein Arbeitsblatt!<br><br><br>
# Notiere die besprochenen '''{{pdf|Konstruktion_Winkelhalbierenden.pdf|Konstruktionsschritte}}''' auf Dein Arbeitsblatt!
|3=Arbeitsmethode}}


=== Konstruktion mit Geogebra ===
{{Box|1=Aufgabe - Konstruktion mit Geogebra|2=
'''Auch am Computer kann man eine Winkelhalbierende konstruieren!''' <br><br>
'''Auch am Computer kann man eine Winkelhalbierende konstruieren!''' <br><br>
'''Arbeitsauftrag:'''
'''Arbeitsauftrag:'''
Zeile 54: Zeile 72:
# Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!<br>
# Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!<br>
# Speichere die erstellte Konstruktion unter <<Hausdach_DeinName>> im Klassenverzeichnis ab!
# Speichere die erstellte Konstruktion unter <<Hausdach_DeinName>> im Klassenverzeichnis ab!
<br>
3=Arbeitsmethode}}
<br>


== Quiz zur Winkelhalbierenden ==
== Quiz zur Winkelhalbierenden ==
'''Sind die Aussagen wahr oder falsch?''' Beantworte folgende '''[http://inmare.cspsx.de/quiz_wh4.htm Quizfragen]'''.  <br>
 
<br>
{{Box|1=Quiz zur Winkelhalbierenden|2='''Sind die Aussagen wahr oder falsch?''' Beantworte folgende '''[http://inmare.cspsx.de/quiz_wh4.htm Quizfragen]'''.|3=Üben}}  
<br>
 
== Vertiefung bzw. Wiederholung ==
== Vertiefung bzw. Wiederholung ==
<table width="80%"><tr><td>
 
''Nachdem nun die Lampe angebracht,''<br>
''Nachdem nun die Lampe angebracht,''<br>
''wird noch kein Mittagsschlaf gemacht.''<br>
''wird noch kein Mittagsschlaf gemacht.''<br>
''Max und Moritz schleppen an,''<br>
''Max und Moritz schleppen an,''<br>
''drei Teppiche mit Lust und Fun.''<br>
''drei Teppiche mit Lust und Fun.''<br>
''Diese drei sind rund nicht eckig,''<br>
''Diese drei sind rund nicht eckig,''<br>
''und ganz arg bunt und gar nicht fleckig.''<br>
''und ganz arg bunt und gar nicht fleckig.''<br>
''Für Erwachsene was für ein Kraus,''<br>
''Für Erwachsene was für ein Kraus,''<br>
''Max rollt alle drei so aus,''<br>
''Max rollt alle drei so aus,''<br>
''dass sie sich an beiden Wänden,''<br>
''dass sie sich an beiden Wänden,''<br>
''jeweils mit ihren Kreisrändern befänden.''<br><br>
''jeweils mit ihren Kreisrändern befänden.''<br>
</td><td></td><td></td><td align="right"><br><ggb_applet width="550" height="400" filename="Teppiche2.ggb" showToolBar="true" showResetIcon="true" /></td></tr></table>
 
<ggb_applet width="550" height="400" filename="Teppiche2.ggb" showToolBar="true" showResetIcon="true" />
<br>
<br>
'''Aufgaben:'''
{{Box|1=Aufgabe|2=
# Positioniere die drei unterschiedlich großen Teppiche in obiger Abbildung so, dass sie die Wände berühren!
# Positioniere die drei unterschiedlich großen Teppiche in obiger Abbildung so, dass sie die Wände berühren!
# Betrachte die Mittelpunkte der Teppiche! Welche besondere Lage haben die Mittelpunkte der drei kreisförmigen Teppiche?
# Betrachte die Mittelpunkte der Teppiche! Welche besondere Lage haben die Mittelpunkte der drei kreisförmigen Teppiche?
# Öffne die '''{{Ggb|Teppiche.ggb|GeoGebra-Datei}}'''  und konstruiere in der Geogebra-Datei eine Halbgerade, auf der alle Mittelpunkte von runden Teppichen liegen, die beide Wände berühren!
# Konstruiere in der Geogebra-App eine Halbgerade, auf der alle Mittelpunkte von runden Teppichen liegen, die beide Wände berühren!<ggb_applet height="500" width="625" showMenuBar="false" showResetIcon="true" framePossible="false" enableRightClick="false" filename="Hausdach2.ggb‎" />
# Speichere die Datei unter "Teppich_<<DeinName>>" im Klassenverzeichnis ab!
# Speichere die Datei unter "Teppich_<<DeinName>>" im Klassenverzeichnis ab!
|3=Arbeitsmethode}}
<br>
<br>
<br>
<br>
Zeile 91: Zeile 110:




<div align="center"><font><b>''Dies nun war der erste Streich und der zweite folgt zugleich!''</b></font><br><br></div>
<div align="center"><font><b>''Dies nun war der erste Streich und der zweite folgt zugleich!''</b></font></div>
<br>
<br>
{{Lernpfad-M|<font><b>2. Streich: [[Mathematik-digital/Die Mittelsenkrechte|Die Mittelsenkrechte]]</b></font>}}
<br>
<div align="center">
{|
|{{Lernpfad-M|<font><b>1. Streich: [[Mathematik-digital/Die Winkelhalbierende|Die Winkelhalbierende]]</b></font>}}
|{{Lernpfad-M|<font><b>2. Streich: [[Mathematik-digital/Die Mittelsenkrechte|Die Mittelsenkrechte]]</b></font>}}
|{{Lernpfad-M|<font><b>3. Streich: [[Mathematik-digital/Das Lot|Das Lot]]</b></font>}}
|}
</div><br>
----
{|width="40%" align="center"
| align="center" |{{blau|<font><b>Dieser Lernpfad wurde erstellt von:</b></font><br>
----
'''[[Benutzer:Petra Bader|Petra Bader]]'''}}
|}


<div style="background-color:#efefef;padding:7px;">
<small>'''Autoren:''' [[Benutzer:Petra Bader|Petra Bader]] </small>
</div>


{{SORTIERUNG:{{SUBPAGENAME}}}}
{{SORTIERUNG:{{SUBPAGENAME}}}}

Version vom 18. August 2018, 11:46 Uhr


Materialien:

Die Winkelhalbierende

Maxmoritz.jpg
Max und Moritz - welch' zwei Knaben,
die sich sehr an Scherzen laben,
sind an ihrem Lieblingsort,
ganz weit von den Eltern fort.
Im Dachgeschoss, das ich da mein',
fehlt der rechte Lichterschein.
Sie beschließen ganz geschwind,
weil sie so geschickt doch sind
mitten in des Daches Gängen
soll die große Lampe hängen.
Haus von Max und Moritz
mit zwei gleichgeneigten Dachflächen

Hausdach.jpg


Aufgabe
  1. Nimm das Tonpapier.png orange-farbene gleichschenklige Dreieck aus Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
  2. Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dachflächen auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!
  3. Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der Winkelhalbierenden!
Tonpapier.png


Was ist eine Winkelhalbierende?

Das Seil, an dem die Lampe aufgehängt ist, halbiert den Winkel der beiden Dachflächen. Aufgrund welcher geometrischen Eigenschaft der Winkelhalbierenden konntest Du das Seil konstruieren?

Definition der Winkelhalbierenden


Sei ein Winkel α gegeben mit den beiden Halbgerade g und h als Schenkel.
Die Symmetrieachse der beiden Halbgeraden g und h heißt Winkelhalbierende w des Winkels α.

GeoGebra



Notiere auf dem Arbeitsblatt:

  1. Übertrage die Definition der Winkelhalbierenden auf Dein Arbeitsblatt!



Konstruktion der Winkelhalbierenden

Aufgabe - Konstruktionsschritte
  1. Konstruiere mit Zirkel und Lineal die Winkelhalbierende auf Deinem Arbeitsblatt!
  2. Notiere die besprochenen Pdf20.gif Konstruktionsschritte auf Dein Arbeitsblatt!

Aufgabe - Konstruktion mit Geogebra

Auch am Computer kann man eine Winkelhalbierende konstruieren!

Arbeitsauftrag:

  1. Speichere folgende Geogebra.svg GeoGebra-Datei in Deinem Ordner ab und konstruiere mit Geogebra die Winkelhalbierende!
  2. Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!
  3. Speichere die erstellte Konstruktion unter <<Hausdach_DeinName>> im Klassenverzeichnis ab!
3=Arbeitsmethode

Quiz zur Winkelhalbierenden

Quiz zur Winkelhalbierenden
Sind die Aussagen wahr oder falsch? Beantworte folgende Quizfragen.

Vertiefung bzw. Wiederholung

Nachdem nun die Lampe angebracht,
wird noch kein Mittagsschlaf gemacht.
Max und Moritz schleppen an,
drei Teppiche mit Lust und Fun.
Diese drei sind rund nicht eckig,
und ganz arg bunt und gar nicht fleckig.
Für Erwachsene was für ein Kraus,
Max rollt alle drei so aus,
dass sie sich an beiden Wänden,
jeweils mit ihren Kreisrändern befänden.
GeoGebra


Aufgabe
  1. Positioniere die drei unterschiedlich großen Teppiche in obiger Abbildung so, dass sie die Wände berühren!
  2. Betrachte die Mittelpunkte der Teppiche! Welche besondere Lage haben die Mittelpunkte der drei kreisförmigen Teppiche?
  3. Konstruiere in der Geogebra-App eine Halbgerade, auf der alle Mittelpunkte von runden Teppichen liegen, die beide Wände berühren!
    GeoGebra
  4. Speichere die Datei unter "Teppich_<<DeinName>>" im Klassenverzeichnis ab!



Weitere Aufgaben und Hausaufgabe

Schmid A., Weidig I. (Hrsg.): Lambacher Schweizer 7, Mathematik für Gymnasien, Stuttgart 2005:
S. 18 / Nr. 3, 5 und S. 19 / 7


Dies nun war der erste Streich und der zweite folgt zugleich!


Autoren: Petra Bader

<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Die Winkelhalbierende,Winkelhalbierende,Lernpfad,Mathematik,7. Klasse</metakeywords>