Winkelhalbierende, Mittelsenkrechte, Lot: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Petra Bader
Main>Petra Bader
Zeile 21: Zeile 21:
''weil sie so geschickt doch sind ''<br>
''weil sie so geschickt doch sind ''<br>
''mitten in des Daches Gängen ''<br>
''mitten in des Daches Gängen ''<br>
''soll die große Lampe hängen''<br></td><td></td><td></td><td></td><td>[[Bild:Hausdach.jpg|250px|right]]</td></tr></table>
''soll die große Lampe hängen.''<br></td><td></td><td></td><td></td><td>[[Bild:Hausdach.jpg|250px|right]]</td></tr></table>
<br>
<br>
<br>
<br>
Zeile 40: Zeile 40:


  '''<u>Definition der Winkelhalbierenden:</u>'''
  '''<u>Definition der Winkelhalbierenden:</u>'''
  Die Symmetrieachse der Halbgeraden g und h heißt auch '''Winkelhalbierende''' des Winkels '''&alpha;'''
  Die Symmetrieachse der Halbgeraden g und h heißt auch '''Winkelhalbierende''' des Winkels '''&alpha;'''.
<br>
<br>



Version vom 21. Februar 2007, 17:39 Uhr

Lernpfad
Meisterlaempel.jpg
Beachte:

Lies Dir die Texte und die Aufgabenstellungen sorgfältig durch!
Besprich Dich bei der Bearbeitung mit Deiner Nachbarin bzw. Deinem Nachbarn!
Befolge Schritt für Schritt die Arbeitsanweisungen!


Vorlage:Babel-1

Die Winkelhalbierende

Maxmoritz.jpg

Max und Moritz - welch' zwei Knaben,
die sich sehr an Scherzen laben,
sind an ihrem Lieblingsort,
ganz weit von den Eltern fort.
Im Dachgeschoss, das ich da mein',
fehlt der rechte Lichterschein.
Sie beschließen ganz geschwind,
weil sie so geschickt doch sind
mitten in des Daches Gängen

soll die große Lampe hängen.
Hausdach.jpg



Welche besondere Eigenschaft besitzt das Seil, an dem die Lampe aufgehängt wurde?

Arbeitsaufträge:

  1. Nehme das orange Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
  2. Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dächer auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!
  3. Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der Winkelhalbierenden!



Was ist eine Winkelhalbierende?

Du hast bereits herausgefunden, dass das Seil, an dem die Lampe aufgehängt ist, den Winkel den die beiden Dächer bilden halbiert.

Definition der Winkelhalbierenden:
Die Symmetrieachse der Halbgeraden g und h heißt auch Winkelhalbierende des Winkels α.


Notiere auf Dein Arbeitsblatt:

  1. Übertrage die Definition der Winkelhalbierenden auf Dein Arbeitsblatt!
  2. Konstruiere die Winkelhalbierende auf Deinem Arbeitsblatt!
  3. Notiere die Konstruktionsschritte auf Dein Arbeitsblatt!
  4. Experimentiere noch einmal mit der Winkelhalbierenden!
  5. Wann kommt in der Natur, im Alltag eine Winkelhalbierende vor? Überlege Dir mindestens drei weitere Beispiele!


Konstruktionen der Winkelhalbierenden mit Geogebra

Auch am Computer kann man eine Winkelhalbierende konstruieren!
Speichere folgende Geogebra.svg GeoGebra-Datei in Deinem Ordner ab und konstruiere mit Geogebra die Winkelhalbierende! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!
Speichere die erstellte Konstruktion unter <<DeinName_Haus>> im Klassenverzeichnis ab!

Hausaufgabe:
S. 18 / Nr. 3, 5 und 7


Quiz zur Winkelhalbierenden

Sind die Aussagen wahr oder falsch? Beantworte folgende Quizfragen.



Vertiefung bzw. Wiederholung


Nachdem nun die Lampe angebracht,
wird noch kein Mittagsschlaf gemacht.
Max und Moritz schleppen an,
drei Teppiche mit Lust und Fun.
Alle drei sind rund nicht eckig,
und ganz arg bunt und gar nicht fleckig.
Da beide Kinder haben's so gewollt
werden alle drei Stück in einer Ecke ausgerollt.
Max rollt alle drei so aus,
dass - ja so sieht es dort dann aus,
sie sich an beiden Wänden,
mit ihrem Teppichrand befänden.

Teppiche.jpg



Aufgaben:

  1. Öffne die Geogebra.svg GeoGebra-Datei und positioniere die drei unterschiedlich großen Teppiche so, dass sie die Wände berühren!
  2. Betrachte die Mittelpunkte der Teppiche! Was fällt auf?
  3. Konstruiere in der Geogebra-Datei eine Halbgerade, auf der alle Mittelpunkte von runden Teppichen liegen, die beide Wände berühren!
  4. Speichere die Datei unter "teppich_<<DeinName>>" im Klassenverzeichnis ab!



Dies nun war der erste Streich und der zweite folgt zugleich!



Die Mittelsenkrechte

Sägen.jpg In der schönen Maienzeit,

wenn die bayerischen Dorfesleut
viele große Stämme krachen
schmücken und zurechte machen,
wünschen Max und Moritz auch
sich einen Maibaum zum Gebrauch.
Max und Moritz, gar nicht träge,
Sägen heimlich mit der Säge,
Ritzeratze! voller Tücke,
In die Birke eine Lücke.
Max und Moritz heimlich geh'n
wo der Maibaum nun soll steh'n
Dieser wird nun aufgestellt
wo es allen Leut' gefällt,
wo die Katzen oft 'rumschleichen

mittig zwischen den zwei Eichen

Eichen.jpg

Welche besondere Eigenschaften besitzt der Maibaum?


Aufgabe - Teil 1:

  1. Überlege zunächst, welche besonderen Eigenschaften der Maibaum von Max und Moritz besitzen muss.
  2. Betrachte nun folgende Strecke [AB] und verschiebe die Punkte A und B
  3. Welche besonderen Eigenschaften besitzt die rote Gerade? Überlege wie man aufgrund dieser Eigenschaft die Gerade konstruieren kann! Begründe, warum die rote Gerade Mittelsenkrechte heißt!


Was ist eine Mittelsenkrechte?

Definition der Mittelsenkrechten
Eine Gerade heißt Mittelsenkrechte zu einer Strecke [AB], wenn sie durch den Mittelpunkt
der Strecke verläuft (die Strecke halbiert) und gleichzeitig auf ihr senkrecht steht.
Sie wird mit m[AB] bezeichnet.
Die Mittelsenkrechte zu einer Strecke ist eine Symmetrieachse. 



Konstruktion der Mittelsenkrechten

Aufgabe - Teil 2:

  1. Öffne mit dem Programm GeoGebra die Geogebra.svg Datei mit zwei Eichen, am Punkt A und am Punkt B.
  2. Konstruiere die Mittelsenkrechte auf die Strecke [AB], die beide Eichen miteinander verbindet!
  3. Speichere die Datei unter dem Namen "Mittelsenkrechte_<<DeinName>>" im Klassenverzeichnis auf der Festplatte ab!
  4. Überprüfe Deine Konstruktionsschritte anhand folgender Konstruktion!
  5. Formuliere die einzelnen Konstruktionsschritte schriftlich auf einem Übungszettel! Überprüfe die Konstruktionsschritte mit Deinem Nachbarn!



Aufgabe - Teil 3:

  1. Übertrage die Definition der Mittelsenkrechten auf Dein Arbeitsblatt!
  2. Konstruiere die Mittelsenkrechte und formuliere die Konstruktionsschritte!
  3. Überlege weitere Beispiele in der Natur, wo eine Mittelsenkrechte vorkommt!



Weiteres Anwendungsbeispiel:
Gehe auf folgende Internetseite. Lies Dir den dabeistehenden Text sorgfältig durch und überlege!

Dies nun war der zweite Streich und der letzte folgt zugleich!



Das Lot

Das Lot errichten

Auf einem ganz bestimmten Punkt
soll er steh'n mit ganz viel Prunk,
der herrlich geschmückte Tannenbaum

in Max und Moritz' schönsten Raum.
Tannenbaum.jpg

Wie wird der Ort, an dem der Tannenbaum aufgestellt werden soll, beschrieben?

Aufgabe:

  1. Nimm ein Blatt Papier zur Hand und zeichne eine 6cm-lange Strecke [AB]!
  2. Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke nicht teilt!
  3. Überlege: Wie konstruiert man eine senkrechte Linie im Punkt P? Diese senkrechte Gerade wird auch als Lot bezeichnet! Überprüfe Deine Konstruktionsschritte anhand der linken Skizzen!
Loterrichten.jpg
Definition des Lotes:

Eine Senkrechte in einem Punkt P zu einer Geraden g nennt man Lot.
Der Schnittpunkt des Lotes l mit g heißt Lotfußpunkt.



Konstruktion: Errichten eines Lotes auf einer Geraden g im Punkt P

Überlege Dir die einzelnen Konstruktionsschritte um ein Lot im Punkt P auf einer Geraden g zu errichten! Überprüfe Deine Überlegungen mit Deinem/r NachbarIn!

Merke: Gilt P ∈ g, so sagt man auch: Im Punkt P wird das Lot zu g errichtet.

Arbeitsaufträge:

  1. Übertrage die Definition und die Merkregel vom Lot auf Dein Arbeitsblatt!
  2. Konstruiere auf dem Arbeitsblatt im Punkt P auf der Geraden g das Lot l! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  3. Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
  4. Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?



Das Lot fällen

Maxhähnchen.jpgDurch den Schornstein mit Vergnügen

Sehen sie die Hühner liegen,
Die schon ohne Kopf und Gurgeln
Lieblich in der Pfanne schmurgeln.

Max und Moritz auf dem Dache
sind jetzt tätig bei der Sache.
Max hat schon mit Vorbedacht
Eine Angel mitgebracht.

Schnupdiwup! Da wird nach oben
Schon ein Huhn heraufgehoben.
Schnupdiwup! jetzt Numro zwei;
Schnupdiwup! jetzt Numro drei;
Und jetzt kommt noch Numro vier:

Schnupdiwup! Dich haben wir!




Welchen "Weg" muss die Angelschnur nehmen, damit Max und Moritz die Hähnchen erangeln können?

Konstruktion: Fällen eines Lotes vom Punkt P auf eine Gerade g

Überlege Dir die einzelnen Konstruktionsschritte um ein Lot von einem Punkt P auf eine Geraden g zu fällen! Überprüfe Deine Überlegungen mit Deinem/r NachbarIn!
Überprüfe Deine Konstruktionsschritte anhand der rechten Skizzen!

Merke: Gilt P ∉ g, so sagt man auch: Im Punkt P wird das Lot auf g gefällt.

Arbeitsaufträge:

  1. Konstruiere auf dem Arbeitsblatt vom Punkt P das Lot l auf die Geraden g! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  2. Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
  3. Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?



Konstruieren mit GeoGebra:

  1. Speichere folgende Geogebra.svg Datei in Deinem Ordner ab!
  2. Fälle das Lot vom Punkt P auf die Gerade g! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!
  3. Speichere die erstellte Konstruktion unter "Lotfaellen_<<DeinName_Haus>>" im Klassenverzeichnis ab!



Hausaufgabe: S. 18 Nr 6 Welches Buch? Titel



Petra Bader 26. Oktober 2006 (METDST)