Übungen Funktionsuntersuchung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 6: Zeile 6:
b) <math>f(x)= \frac{4+x^2}{x^2-9}</math>
b) <math>f(x)= \frac{4+x^2}{x^2-9}</math>


c) <math>f(x)= \frac{x^2-4}{x^2+1}</math>
c) <math>f(x)= \frac{1}{6}(x+1)^2(x-2)</math> <span class="brainy hdg-rocket  fa-2x" "></span>
 
d) <math>f(x)= \frac{x^2-4}{x^2+1}</math> <span class="brainy hdg-rocket  fa-2x" "></span>
 
e) <math>f(x)= 2-\frac{5}{2}x^2+x^4</math> <span class="brainy hdg-rocket  fa-2x" "></span>
 


d) <math>f(x)= 2-\frac{5}{2}x^2+x^4</math> <span class="brainy hdg-rocket  fa-2x" "></span>


{{Lösung versteckt|Überprüfe deine Ergebnisse eigenständig mithilfe von [https://www.geogebra.org/calculator GeoGebra] |Tipp anzeigen|Tipp verbergen}}
{{Lösung versteckt|Überprüfe deine Ergebnisse eigenständig mithilfe von [https://www.geogebra.org/calculator GeoGebra] |Tipp anzeigen|Tipp verbergen}}

Version vom 12. Dezember 2022, 13:28 Uhr

Aufgabe 1

Untersuche die Funktion auf Symmetrie. Bestimme die Schnittpunkte mit den Achsen, ggf. das Verhalten an den Definitionslücken, das Verhalten im Unendlichen und die Extrema. Skizziere anschließend .

a)

b)

c)

d)

e)


Überprüfe deine Ergebnisse eigenständig mithilfe von GeoGebra
Hier gibt's die Lösung
Hier gibt's die Lösung
Hier gibt's die Lösung
Hier gibt's die Lösung