Logarithmusfunktion: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 46: | Zeile 46: | ||
{{Box| Die Stammfunktion des natürlichen Logarithmus| | {{Box| Die Stammfunktion des natürlichen Logarithmus| | ||
Die Stammfunktion des natürlichen Logarithmus ist definiert durch | Die Stammfunktion des natürlichen Logarithmus ist definiert durch: | ||
<math>\bar{F}(x)=\int ln(x) dx=x\cdot ln|x|-x+c</math>. | <math>\bar{F}(x)=\int ln(x) dx=x\cdot ln|x|-x+c</math>. | ||
Zeile 59: | Zeile 59: | ||
{{Lösung versteckt|1= <math>\bar{F}'(x)=(x\cdot ln|x|-x+c)'= 1\cdot ln(x)+x\cdot \frac{1}{x}-1=ln(x)+1-1=ln(x)=\bar{f}(x)</math> |2=Lösung|3=Lösung verbergen}} | {{Lösung versteckt|1= <math>\bar{F}'(x)=(x\cdot ln|x|-x+c)'= 1\cdot ln(x)+x\cdot \frac{1}{x}-1=ln(x)+1-1=ln(x)=\bar{f}(x)</math> |2=Lösung|3=Lösung verbergen}} | ||
|Arbeitsmethode}} | |||
{{Box| Kurvendiskussion ohne GTR| | |||
Gegeben ist die Funktion <math>f(x)=-10\frac{ln(x)}{x^2}</math>. | |||
'''a)''' Untersuche diese hinsichtlich des ''Definitionsbereiches'', der ''Symmetrie'', der ''Schnittpunkte mit den Koordinatenachsen'', dem ''Unendlichkeitsverhalten'' der ''Extrempunkte'' und der ''Wendepunkte''. | |||
'''b)''' Die Wendetangente begrenzt mit den Koordinatenachsen ein Flächenstück im 4. Quadranten. Berechne den Flächeninhalt dieses Stückes. | |||
|Arbeitsmethode}} | |Arbeitsmethode}} |
Version vom 24. Januar 2021, 17:30 Uhr
Lernpfad zur Logarithmusfunktion
(Sollte euch das Applet nicht angezeigt werden hilft es i.d.R. ein paar mal die Seite zu aktualisieren.)
a) Zoomt in dem GeoGebra-Applet ganz nah an die y-Achse heran und folgt dem Verlauf des Graphen. Was fällt euch auf?
b) Zoomt wieder raus. Probiert die verschiedenen Schieberegler aus. Verändert dabei immer nur einen und notiert euch welchen Einfluss die jeweilige Änderung auf den Funktionsgraphen hat.
Was ist der Logarithmus überhaupt?
Die Ableitung von kann mit Hilfe der Ableitungsregel für Umkehrfunktionen
berechnet werden.
Aufgabe: Leite mit Hilfe der obigen Ableitungsregel den natürlichen Logarithmus ab.
Leite die folgenden orangenen Funktionen ab und ordne sie dann ihrer Ableitung zu. Notiere die eventuelle Fragen oder Unklarheiten.
Die Stammfunktion des natürlichen Logarithmus ist definiert durch:
.
(Die Integration kann man mit Hilfe partieller Integration durchführen.)
Aufgabe: Weise nach, dass die obige Funktion die Stammfunktion von ist.
Gegeben ist die Funktion .
a) Untersuche diese hinsichtlich des Definitionsbereiches, der Symmetrie, der Schnittpunkte mit den Koordinatenachsen, dem Unendlichkeitsverhalten der Extrempunkte und der Wendepunkte.
b) Die Wendetangente begrenzt mit den Koordinatenachsen ein Flächenstück im 4. Quadranten. Berechne den Flächeninhalt dieses Stückes.