Vektorrechnung/WHG Q1 Vermischte Übungen zu Vektoren: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 57: Zeile 57:
}}
}}
}}
}}
<br>
====Knobelaufgabe zur Verschiebung====
Vervollständigen Sie die Pyramide, indem Sie für die fehl
<br>
<ggb_applet width="800" height="620" id="GnKKtuax" />
<br>
<br>
<br>
<br>


{{Fortsetzung|weiter=zurück zur Übersicht|weiterlink=WHG_Q1_Vektorrechnung|vorher=Definition (Orts-)Vektor|vorherlink=WHG Q1 Vektorrechnung/WHG Q1 Definition (Orts-)Vektor}}
{{Fortsetzung|weiter=zurück zur Übersicht|weiterlink=WHG_Q1_Vektorrechnung|vorher=Definition (Orts-)Vektor|vorherlink=WHG Q1 Vektorrechnung/WHG Q1 Definition (Orts-)Vektor}}

Version vom 21. September 2020, 09:29 Uhr

Übung

Auf dieser Seite finden Sie vermischte Übungen zum Rechnen mit Vektoren.

Im Rahmen unterschiedlicher Aufgabentypen können Sie Ihr neu erworbenes Wissen vertiefen.

Ortsvektoren

Bestimmen Sie den Ortsvektor des Punktes , indem Sie Anfangs- und Endpunkt des Pfeiles bewegen.

GeoGebra


Der Weg durch das Labyrinth - Vektoren zeichnen

  • Zeichnen Sie mit Hilfe von Vektoren einen lückenlosen Weg durch das Labyrinth vom Start- zum Zielpunkt ein. Geben Sie dazu im Eingabefeld die Vektoren einzeln in folgender Schreibweise ein: Vektor((, ), (, )) Dies beschreibt den Vektor vom Punkt zum Punkt .
  • Begründen Sie anschließend, welche der Pfeile zum selben Vektor gehören.


GeoGebra


Vektoren im Koordinatensystem

Gegeben ist der Vektor .

  • Zeichnen Sie drei Pfeile, die den Vektor repräsentieren, in ein Koordinatensystem.
  • Es gilt: mit bestimmen Sie die Koordinaten von .
  • Es gilt: mit bestimmen Sie die Koordinaten von .
  • -
  • Geht man von aus drei Einheiten in Richtung der -Achse und anschließend eine Einheit in Richtung der -Achse, so erreicht man : bzw. .
  • Geht man von aus drei Einheiten in Richtung der -Achse und anschließend eine Einheit gegen die Richtung der -Achse, so erreicht man : bzw. .


Parallelogramm im Raum

Überprüfen Sie, ob die Punkte , , und die aufeinanderfolgenden Ecken eines Parallelogramms darstellen.

Abbildung 4

Die Abbildung verdeutlich, dass es genügt zu überprüfen, ob (bzw. ) gilt:

;

;

also gilt .

Folglich stellen , , und die Ecken eines Parallelogramms dar.


Knobelaufgabe zur Verschiebung

Vervollständigen Sie die Pyramide, indem Sie für die fehl


GeoGebra