Benutzer:PascalHänle/Folgen und Grenzwert: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 3: Zeile 3:
[[Datei:Mensch ärgere Dich nicht .jpg|mini]]
[[Datei:Mensch ärgere Dich nicht .jpg|mini]]
<br />{{Box|Aufgabe 1|'''a)''' Wie groß ist die Wahrscheinlichkeit, dass drei Würfe, vier Würfe, fünf Würfe, …, n Würfe genügen, um ins Spiel zu kommen. Stelle hierzu eine Folge in expliziter Schreibweise auf.  
<br />{{Box|Aufgabe 1|'''a)''' Wie groß ist die Wahrscheinlichkeit, dass drei Würfe, vier Würfe, fünf Würfe, …, n Würfe genügen, um ins Spiel zu kommen. Stelle hierzu eine Folge in expliziter Schreibweise auf.  
<math>a_n = 3+1/2n
 
</math>


'''b)''' Stelle die ersten 6 Folgeglieder graphisch dar und notiere Deine Vermutung wie sich die Folgenglieder für wachsendes n verhalten und welche Werte diese annehmen.{{Lösung versteckt|Hier als Beispiel die graphische Darstellung für die Folge der Quadratzahlen[[Datei:Beipspielfolge.png|rand|400x400px|Graphische Darstellung der ersten 6 Folgeglieder für die Folge der Quadratzahlen.]]|Hife anzeigen|Hilfe verbergen}}
'''b)''' Stelle die ersten 6 Folgeglieder graphisch dar und notiere Deine Vermutung wie sich die Folgenglieder für wachsendes n verhalten und welche Werte diese annehmen.{{Lösung versteckt|Hier als Beispiel die graphische Darstellung für die Folge der Quadratzahlen[[Datei:Beipspielfolge.png|rand|400x400px|Graphische Darstellung der ersten 6 Folgeglieder für die Folge der Quadratzahlen.]]|Hife anzeigen|Hilfe verbergen}}
Zeile 12: Zeile 11:
|Arbeitsmethode}}
|Arbeitsmethode}}


{{Box|Aufgabe 2|'''a)''' Wie verhalten sich die Folgenglieder bei wachsender Platznummer n? Beschreibe die Gemeinsamkeiten und Unterschiede der drei Folgen. {{Lösung versteckt|[[Datei:Baumdiagramm Mensch ärger dich nicht .jpg|rand|400x400px]]
{{Box|Aufgabe 2|'''a)''' Wie verhalten sich die Folgenglieder bei wachsender Platznummer n? Beschreibe die Gemeinsamkeiten und Unterschiede der drei Folgen.  
|Hife anzeigen|Hilfe verbergen}}
<math>a_n =  3 + \frac{1}{2n}</math>


'''b)''' Stelle die ersten 6 Folgeglieder graphisch dar und notiere Deine Vermutung wie sich die Folgenglieder für wachsendes n verhalten und welche Werte diese annehmen.{{Lösung versteckt|Hier als Beispiel die graphische Darstellung für die Folge der Quadratzahlen[[Datei:Beipspielfolge.png|rand|400x400px|Graphische Darstellung der ersten 6 Folgeglieder für die Folge der Quadratzahlen.]]|Hife anzeigen|Hilfe verbergen}}
'''b)''' Stelle die ersten 6 Folgeglieder graphisch dar und notiere Deine Vermutung wie sich die Folgenglieder für wachsendes n verhalten und welche Werte diese annehmen.{{Lösung versteckt|Hier als Beispiel die graphische Darstellung für die Folge der Quadratzahlen[[Datei:Beipspielfolge.png|rand|400x400px|Graphische Darstellung der ersten 6 Folgeglieder für die Folge der Quadratzahlen.]]|Hife anzeigen|Hilfe verbergen}}

Version vom 7. September 2020, 14:16 Uhr

Folgen und Grenzwerte

Beim Spiel Mensch ärgere Dich nicht benötigt man eine 6 um mit dem ersten Männchen ins Spiel einzusteigen.

Mensch ärgere Dich nicht .jpg


Aufgabe 1

a) Wie groß ist die Wahrscheinlichkeit, dass drei Würfe, vier Würfe, fünf Würfe, …, n Würfe genügen, um ins Spiel zu kommen. Stelle hierzu eine Folge in expliziter Schreibweise auf.


b) Stelle die ersten 6 Folgeglieder graphisch dar und notiere Deine Vermutung wie sich die Folgenglieder für wachsendes n verhalten und welche Werte diese annehmen.
Hier als Beispiel die graphische Darstellung für die Folge der QuadratzahlenGraphische Darstellung der ersten 6 Folgeglieder für die Folge der Quadratzahlen.
c) Überprüfe deine Vermutung mit Hilfe des GeoGebra Applets und der Tabelle.

Aufgabe 2

a) Wie verhalten sich die Folgenglieder bei wachsender Platznummer n? Beschreibe die Gemeinsamkeiten und Unterschiede der drei Folgen.

b) Stelle die ersten 6 Folgeglieder graphisch dar und notiere Deine Vermutung wie sich die Folgenglieder für wachsendes n verhalten und welche Werte diese annehmen.
Hier als Beispiel die graphische Darstellung für die Folge der QuadratzahlenGraphische Darstellung der ersten 6 Folgeglieder für die Folge der Quadratzahlen.
c) Überprüfe deine Vermutung mit Hilfe des GeoGebra Applets und der Tabelle.