Einführung von Funktionen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 107: Zeile 107:
|Lösung zeigen | Lösung verstecken}}|Lösung}}
|Lösung zeigen | Lösung verstecken}}|Lösung}}


{{button
 
|position=rechts
{{Fortsetzung|weiter=Funktion - eine eindeutige Zuordnung|weiterlink= Agnes lint/Funktion - eine eindeutige Zuordnung}}
|text=Funktion - eine eindeutige Zuordnung <span class="fa fa-chevron-circle-right"></span>
|link=Benutzer: Funktion - eine eindeutige Zuordnung  
}}

Version vom 26. März 2020, 15:07 Uhr


Lernpfad
Einführung von Funktionen

Einführung von Funktionen

Im Rahmen dieses Lernpfades solltes du gewisse Lernziele und Grundkompetenzen für die schriftliche Reifeprüfung erwerben.

Verschiedene Darstellungsarten von Zusammenhänge kennen, anwenden und interpretieren können.
  • FA 1.3: Zwischen tabellarischer und graphischer Darstellung von Funktionen wechseln können
  • FA 1.4: Aus Tabellen, Graphen und Gleichungen von Funktionen Werte(paare) ermitteln und im Kontext deuten können



Funktionen – was ist das eigentlich genau?

Info

Wir Menschen erkennen und suchen in unserer Welt seit jeher nach Zusammenhängen und versuchen Verbindungen zwischen unterschiedlichsten Ereignissen herzustellen.

So kann etwa ein Zusammenhang wischen der Körpergröße und dem Körpergewicht festgestellt werden. Die Körpergröße ist dabei ursächlich für das Körpergewicht. Im folgenden Lernpfad wirst du erfahren, wie man Zusammenhänge mit sogenannten Funktionen genau beschreiben und graphisch sichtbar machen kann.


Einführung des Funktionsbegriff

Um den vorher bereits besprochenen Zusammenhang zwischen Körpergröße und Gewicht untersuchen zu können, müssen wir zu allererst eine Wertetabelle erstellen. Dabei wird in der ersten Spalte die Körpergröße und in die zweite Spalte das Gewicht eingetragen.


Wertetabelle

Eine Tabelle, die eine Zuordnung darstellt, nennt man Wertetabelle.

  • In der ersten Spalte stehen die Werte der unabhängigen Größe, in der zweiten die der abhängigen.
  • Die Einheiten der Größen sollen ebenso angegeben sein.


Körpergröße (in cm) Gewicht (in kg)
154 51
158 58
161 57
172 65
178 70
183 78
187 90
193 89

Üben
Versuche nun selbst in deinem Heft eine Wertetabelle zu folgenden Angaben zu erstellen. Max spart ab heute eine Woche lang jeden Tag 50 Cent. Jedem Tag wird Max' Guthaben zugeordnet.

Lösung
Lösung Wertetabelle Max

Graph einer Zuordnung

Um den Graphen einer Zuordnung zu erhalten, werden Wertepaare in ein Koordinatensystem eingezeichnet.

  • Die unabhängige Variable wird auf die waagrechte Achse (Abszisse) eingetragen, die abhängige Größe in Richtung der senkrechten Achse (Ordinate).
  • Die Beschriftung der Achsen ist bei jedem Graphen sehr wichtig. Es muss ersichtlich sein welche Werte auf den einzelnen Achsen aufgetragen werden und in welcher Einheit sie aufgetragen werden.


Um den Zusammenhang zwischen Körpergröße und Körpergewicht graphisch sichtbar zu machen, werden die Wertepaare nun in ein Koordinatensystem eingetragen.

Eingetragene Wertepaare im Koordinatensystem.png


Man erkennt nun, dass die Wertepaare zumindest annähernd auf einer geraden Linie liegen. Natürlich berührt die Linie nicht alle Punkt, allerdings erhält man so eine sogenannte Annäherung.


Geogebra-export (2).png

Die gerade Linie ergibt also für jeden beliebigen x-Wert einen zugehörigen y-Wert (nicht nur für unsere bereits eingetragenen Punkte.)


Info
Graph und Wertetabelle können nicht immer alle möglichen Wertepaare eines Zusammenhangsdarstellen. Durch die durchgezogene Linie stellt der Graph jedoch alle unendlich vielen Wertepaare dar. Dies würde natürlich mit einer Wertetabelle nie gelingen.

Üben
Versuche nun in deinem Heft die Wertepaare vom Guthaben von Max in ein Koordinatensystem eintragen und leg eine passende Linie durch die Wertepaare.

Lösung
Lineare Funktion Max Guthaben.png


Termdarstellung

Die Termdarstellung drückt den Zusammenhang zwischen zwei Größen in Form einer Gleichung aus. Für diese Darstellungsart ist es unbedingt notwendig, die einzelnen Größen des Zusammenhangs durch Buchstaben zu benennen und mit den dazugehörigen Einheiten klar auszuweisen.

Die Schreibweise f(x) (gesprochen "f von x") drückt aus, dass die Größe f von der unabhängigen Größe x abhängt.

Musterbeispiel

Antonia soll ihrer Mutter mindestens zwei und höchstens sieben Tage lang helfen. Sie erhält dafür jeden Tag 7 €. Antonias Verdienst hängt von der Anzahl der Arbeitstage ab.

  1. Erstelle eine Tabelle, die Antonias Verdienst in Abhängigkeit von den Arbeitstagen zeigt.
  2. Zeichne den Graphen der Zuordnung.
  3. Gib einen Term für die dargestellte Zuordnung an.

Lösung

Wertetabelle Antonia.png Graph Antonia.png

Zunächst müssen Variablen für die beiden Größen der Zuordnung gewählt werden. n: Anzahl der Arbeitstage V(n): Verdienst nach n Arbeitstagen in Euro (€)

Termdarstellung:


Üben

Joshua hat bereits 20€ angespart. Er plant in den nächsten zehn Monaten sein Erspartes jeweils am Monatsende um 5€ zu vermehren.

  1. Erstelle eine Tabelle, die das monatliche Guthaben in den zehn Monaten darstellt.
  2. Zeichne den Graphen der Zuordnung.
  3. Gib einen Term für die dargestellte Zuordnung an.

Lösung

Guthaben Joshua Tabelle.png Funktion Guthaben Joshua.png

Zunächst müssen Variablen für die beiden Größen der Zuordnung gewählt werden. n: Anzahl der Monate G(n): Guthaben nach n Monaten in Euro (€) Termdarstellung: