Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 34: Zeile 34:


c) Berechnen Sie in folgender Graphik die Steigung der Sekante durch die Punkte P und Q. <br/>
c) Berechnen Sie in folgender Graphik die Steigung der Sekante durch die Punkte P und Q. <br/>
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
 
{{Lösung versteckt|1=Graphik {{Lösung versteckt|1=Hilfe|2=Hilfe anzeigen|3=Hilfe verbergen}}|2=Hilfe anzeigen|3=Hilfe verbergen}}
{{Lösung versteckt|1=Graphik {{Lösung versteckt|1=Hilfe|2=Hilfe anzeigen|3=Hilfe verbergen}}|2=Graphik anzeigen|3=Graphik verbergen}}{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
|Arbeitsmethode
|Arbeitsmethode
}}
}}
Zeile 43: Zeile 43:
<br/>
<br/>
Nähern Sie den Punkt Q in 4 Schritten so nahe wie es das Applet zulässt dem Punkt P. <br/>
Nähern Sie den Punkt Q in 4 Schritten so nahe wie es das Applet zulässt dem Punkt P. <br/>
Halten Sie die Schritte in folgender Tabelle schriftlich fest. Entnehmen Sie die benötigten Werte dem Applet.
Halten Sie die Schritte in folgender Tabelle schriftlich fest. Entnehmen Sie die benötigten Werte [[/Aufgabe 3 a)|<u>diesem Applet</u>]].


{{Lösung versteckt|[[/Aufgabe 3 a)|zum Applet]] <ggb_applet id="tgks8yyz" width="400" height="310" /> |2=Tabelle und Applet anzeigen|3=Tabelle und Applet verbergen}}
{{Lösung versteckt| Text |2=Lösung anzeigen|3=Lösung verbergen}}
|Arbeitsmethode
|Arbeitsmethode
}}
}}

Aktuelle Version vom 21. August 2019, 10:17 Uhr

Info
In diesem Abschnitt werden Sie sich die Grundvorstellung der Ableitung als Steigung der Tangente selbst erarbeiten. Tangenten haben Sie bereits in der Sekundarstufe 1 im Zusammenhang mit Kreisen kennengelernt. In diesem Abschnitt wird diese bereits vorhandene Vorstellung auf das analytische erweitert. Als Vorwissen sollten Sie über Kenntnisse von Sekanten, linearer Funktionen und des Differenzenquotienten verfügen. Sollten die Hilfen auf dieser Seite nicht genügen, wird auf die Seite Vorwissen verwiesen.

Tangentensteigung Bild.png

Die Tangente

Aufgabe 2.1

a) In diesem Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten

Text zum verstecken

b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.

Text zum Verstecken

c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.

Merksatz


d) Ergänzen Sie zu den Gemeinsamkeiten aus Aufgabe a) was Ihnen in Aufgabe b) und c) aufgefallen ist.
Die Tangente als Schmiegegerade
Die Eigenschaft der Tangente sich dem Graphen einer Funktion in einer kleinen Umgebungen anzupassen, wird als die ,,Schmiegeeigenschaft" der Tangente bezeichnet.

e) Treffen Sie eine Aussage über die Steigung der Tangente und die Steigung der Funktion im Berührpunkt mit der Tangente.

Die Steigung einer Sekante

Beispielbild Sekante.png


Aufgabe 2.2

a) Geben Sie die Definition einer Sekante, wie Sie sie im obigen Bild zu sehen ist an.

Sekante
Eine Sekante ist eine Gerade, die den Graphen einer Funktion in (mindestens) zwei Punkten schneidet.

b) Geben Sie an wie sich die Steigung einer Sekante der Funktion durch die Punkte und allgemein berechnen lässt.

Differerenzenquotient Hilfe.png
Der Differenzenquotient

Die Steigung des Graphen einer linearen Funktion kann mit Hilfe des Differenzenquotienten berechnet werden.

Ist eine Funktion auf einem Intervall definiert, so gibt der Differenzenquotient

die Steigung der Geraden durch die Punkte und an.

Die Differenzen können auch als und geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.

c) Berechnen Sie in folgender Graphik die Steigung der Sekante durch die Punkte P und Q.

Graphik
Hilfe
Text zum Verstecken

Die Steigung der Tangente


Aufgabe 2.3

Wir betrachten die Funktion , den festen Punkt mit und den flexiblen Punkt .
Nähern Sie den Punkt Q in 4 Schritten so nahe wie es das Applet zulässt dem Punkt P.
Halten Sie die Schritte in folgender Tabelle schriftlich fest. Entnehmen Sie die benötigten Werte diesem Applet.

Text
Tabelle: Aufgabe 3
Schritt 1
Schritt 2
Schritt 3
Schritt 4


Aufgabe 2.4

Beschreiben Sie auf was zu achten ist, wenn mit Hilfe der Steigung der Sekante durch zwei Punkte der Funktion die Steigung der Tangente möglichst genau bestimmen will.

Applets