Vera 8 interaktiv/Mathematik/Test C: Unterschied zwischen den Versionen
(aufgabe 19) |
Keine Bearbeitungszusammenfassung |
||
(54 dazwischenliegende Versionen von 7 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[http://www.iqb.hu-berlin.de/bista/aufbsp/vera8_2009/Mathematik_Testheft_C.pdf '''Testheft C zum Download'''] | |||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 1.1: Rapido'''</big> | <big>'''Aufgabe 1.1: Rapido'''</big> | ||
Aus der Preistabelle des Paketdienstes "Rapido" kann man zu jedem Paketgewicht den zugehörigen Preis ablesen: | Aus der Preistabelle des Paketdienstes "Rapido" kann man <br> zu jedem Paketgewicht den zugehörigen Preis ablesen: | ||
::{| class=" | ::{| class="wikitable" | ||
|- | |- | ||
| bis 1 kg | |bis 1 kg | ||
| 3,50 € | |3,50 € | ||
|- | |- | ||
| Über 1 kg bis 2 kg | |Über 1 kg bis 2 kg | ||
| 4,00 € | |4,00 € | ||
|- | |- | ||
| Über 2 kg bis 3 kg | |Über 2 kg bis 3 kg | ||
| 4,50 € | |4,50 € | ||
|- | |- | ||
| Über 3 kg bis 5 kg | |Über 3 kg bis 5 kg | ||
| 5,00 € | |5,00 € | ||
|- | |- | ||
| Über 5 kg bis 8 kg | |Über 5 kg bis 8 kg | ||
| 5,50 € | |5,50 € | ||
|- | |- | ||
| Über 8 kg bis 10 kg | |Über 8 kg bis 10 kg | ||
| 6,00 € | |6,00 € | ||
|} | |} | ||
Zeile 39: | Zeile 35: | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 1.2: Rapido'''</big> | <big>'''Aufgabe 1.2: Rapido'''</big> | ||
Zeile 51: | Zeile 46: | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 2: Zwei Fässer'''</big> | <big>'''Aufgabe 2: Zwei Fässer'''</big> | ||
Zeile 60: | Zeile 54: | ||
Stimmt es, dass Fass 2 zuerst überläuft? Schreib auf, wie du zu deiner Entscheidung gekommen bist. | Stimmt es, dass Fass 2 zuerst überläuft? Schreib auf, wie du zu deiner Entscheidung gekommen bist. | ||
}} | {{Lösung versteckt|1= | ||
:'''Nein''' mit mindestens einer der folgenden Begründungen''' | |||
:*'''Wertetabelle''' | |||
:: ''(kleinere Rechenfehler sind in der Tabelle erlaubt – wichtig ist aber, dass grundsätzlich die eine Spalte jeweils um 20 und die andere um 5 zunimmt)'' | |||
:*'''oder Berechnung der Zeitpunkte des Überlaufs:''' | |||
::Fass I : 2 x = 100 | |||
::: x = 50 => Fass I läuft nach 50 Min. über. | |||
::Fass II: 0,5 x + 60 = 100 | |||
::: x = 80 => Fass II läuft nach 80 Min. über. | |||
:*'''oder graphische Lösung''' | |||
:*'''oder graphische Lösung''' | |||
:*'''oder weitere richtige Antworten mit richtiger Begründung''', z.B.: | |||
::''Fass 2: 40l für 80min und Fass 1 160l für 80min'' | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
</div> | </div> | ||
Gibt es einen Zeitpunkt, zu dem das Wasser in beiden Fässern gleich hoch steht? Schreibe auf, wie du zu deiner Antwort kommst. | Gibt es einen Zeitpunkt, zu dem das Wasser in beiden Fässern gleich hoch steht? Schreibe auf, wie du zu deiner Antwort kommst. | ||
'''Ja und Beschreibung einer korrekten/ angemessenen Vorgehensweise,''': | {{Lösung versteckt|1= | ||
*'''Ablesen aus zu A1 erstellter Tabelle''', z B.: ''Nach 40 Minuten haben beide Fässer gleichen Stand (siehe 2.1)''. | :'''Ja und Beschreibung einer korrekten/ angemessenen Vorgehensweise,''': | ||
*'''oder neue Berechnung''', z. B.: | :*'''Ablesen aus zu A1 erstellter Tabelle''', z B.: ''Nach 40 Minuten haben beide Fässer gleichen Stand (siehe 2.1)''. | ||
:Nach 30 Min. hat Fass I soviel Wasser, wie Fass II seit Beginn hatte. | :*'''oder neue Berechnung''', z. B.: | ||
:Nach 30 Min. hat Fass II bei 1,5 Min --> 15 l nach 30 Min insgesamt 60 l + 15 l, ergibt 75 l. | ::Nach 30 Min. hat Fass I soviel Wasser, wie Fass II seit Beginn hatte. | ||
::Nach 30 Min. hat Fass II bei 1,5 Min --> 15 l nach 30 Min insgesamt 60 l + 15 l, ergibt 75 l. | |||
::: Minuten   Fass I   Fass II | |||
::: 30’     60l    75l | |||
::: 31’     62 | |||
::: 32’     64    76 | |||
::: 33’     66 | |||
::: 34’     68    77 | |||
::: 35’     70 | |||
::: 36’     72    78 | |||
::: 37’     74 | |||
::: 38’     76    79 | |||
::: 39’     78 | |||
:Nach 40 Min. haben beide Fässer die gleiche Füllhöhe, nämlich 80l. | ::: 40’     80    80 | ||
*'''oder Aufstellen der Funktionsgleichungen für beide Fässer, z. B.: | ::Nach 40 Min. haben beide Fässer die gleiche Füllhöhe, nämlich 80l. | ||
#y = Füllmenge und x = Zeit: | :*'''oder Aufstellen der Funktionsgleichungen für beide Fässer, z. B.: | ||
##I y = 2x | :#y = Füllmenge und x = Zeit: | ||
##II y = 0,5x + 60 | :##I y = 2x | ||
#Durch Gleichsetzen folgt: | :##II y = 0,5x + 60 | ||
##2x = 0,5x + 60 | :#Durch Gleichsetzen folgt: | ||
##1,5x = 60 | :##2x = 0,5x + 60 | ||
##x = 40 | :##1,5x = 60 | ||
##y = 2 *40 = 80 | :##x = 40 | ||
:Antwort: Nach 40 Min. Gleichstand bei 80 Litern.“ | :##y = 2 *40 = 80 | ||
*'''oder Ausprobieren,''' z.B. | ::Antwort: Nach 40 Min. Gleichstand bei 80 Litern.“ | ||
#„Fass I ist in 30min zu 60% voll, Fass II zu 75% | :*'''oder Ausprobieren,''' z.B. | ||
#Fass I ist in 40min zu 80% voll, Fass II auch zu 80% | :#„Fass I ist in 30min zu 60% voll, Fass II zu 75% | ||
#Nach 40 Minuten sind beide gleich voll.“ | :#Fass I ist in 40min zu 80% voll, Fass II auch zu 80% | ||
*'''oder inhaltliche Lösung,''' z. B.: | :#Nach 40 Minuten sind beide gleich voll.“ | ||
:''Da Fass 1 leer startet, aber vor Fass 2 überläuft (Aufgabe a) muss die Füllhöhe des Fasses 1 die des Fasses 2 irgendwann „überholen“. Dies ist genau der Zeitpunkt zu dem das Wasser in beiden Fässern gleich hoch ist. | :*'''oder inhaltliche Lösung,''' z. B.: | ||
::''Da Fass 1 leer startet, aber vor Fass 2 überläuft (Aufgabe a) muss die Füllhöhe des Fasses 1 die des Fasses 2 irgendwann „überholen“. Dies ist genau der Zeitpunkt zu dem das Wasser in beiden Fässern gleich hoch ist. | |||
Nach 80 Minuten, weil genau dann beide Fässer voll sind.'' | Nach 80 Minuten, weil genau dann beide Fässer voll sind.'' | ||
* '''oder andere richtige Begründung,''' z.B.: | :* '''oder andere richtige Begründung,''' z.B.: | ||
:''Nach 3 Jahren (oder irgendeinem anderen ausgedachten Zeitraum), weil dann beide Fässer überlaufen''. | ::''Nach 3 Jahren (oder irgendeinem anderen ausgedachten Zeitraum), weil dann beide Fässer überlaufen''. | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
< | <div class="rahmen"> | ||
<big>'''Aufgabe 3: Nachbarschaftshilfe'''</big> | <big>'''Aufgabe 3: Nachbarschaftshilfe'''</big> | ||
Zeile 128: | Zeile 122: | ||
Wie viel Geld sollte jeder bekommen? Schreibe auf, wie du vorgehst. | Wie viel Geld sollte jeder bekommen? Schreibe auf, wie du vorgehst. | ||
{{Lösung versteckt|1= | |||
:z.B.: | :z.B.: | ||
*Fritz: 17 - 14 Stunden | :*Fritz: 17 - 14 Stunden | ||
*Hans: 17 - 15 Stunden | :*Hans: 17 - 15 Stunden | ||
*Max: 17 - 15,50 = 1,5 Stunden | :*Max: 17 - 15,50 = 1,5 Stunden | ||
:'''Abrechnung pro Stunde ergibt:''' | |||
:*Fritz: 23,07 € | |||
:*Hans: 15,38 € | |||
:*Max: 11,54 € | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 4.1: Verknüpfungen'''</big> | <big>'''Aufgabe 4.1: Verknüpfungen'''</big> | ||
Zeile 150: | Zeile 144: | ||
Kreuze die richtige Aussage an. | Kreuze die richtige Aussage an. | ||
(!Wenn x negativ ist, dann ist auch y negativ.) (!Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (Wenn x kleiner ist als 1, dann ist y positiv.) (!x und y müssen verschiedene Vorzeichen haben.) | (!Wenn x negativ ist, dann ist auch y negativ.) (!Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (Wenn x kleiner ist als 1, dann ist y positiv.) (!x und y müssen verschiedene Vorzeichen haben.) | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 4.2: Verknüpfungen'''</big> | <big>'''Aufgabe 4.2: Verknüpfungen'''</big> | ||
Zeile 167: | Zeile 158: | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 4.3: Verknüpfungen'''</big> | <big>'''Aufgabe 4.3: Verknüpfungen'''</big> | ||
Für zwei Zahlen x und y soll gelten: <math>\frac{x}{y} = 1</math>. Kreuze die richtige Aussage an. | Für zwei Zahlen x und y soll gelten: <math>\frac{x}{y} = 1</math>. Kreuze die richtige Aussage an. | ||
(!Wenn x negativ ist, dann ist y positiv.) (Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (!Wenn x kleiner ist als 1, dann ist y negativ.) (x und y müssen verschiedene Vorzeichen haben.) | (!Wenn x negativ ist, dann ist y positiv.) (Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (!Wenn x kleiner ist als 1, dann ist y negativ.) (!x und y müssen verschiedene Vorzeichen haben.) | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 5: Streichholzkette'''</big> | <big>'''Aufgabe 5: Streichholzkette'''</big> | ||
Zeile 190: | Zeile 178: | ||
[[Bild:AufgabeB_5 Streichhölzer2.jpg|400px|center]] | [[Bild:AufgabeB_5 Streichhölzer2.jpg|400px|center]] | ||
{{Lösung versteckt|1= | |||
:bei 3 Quadraten '''10 Streichhölzer''' und bei 4 Quadraten '''13 Streichhölzer''' | :bei 3 Quadraten '''10 Streichhölzer''' und bei 4 Quadraten '''13 Streichhölzer''' | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 5.2: Streichholzkette'''</big> | <big>'''Aufgabe 5.2: Streichholzkette'''</big> | ||
Zeile 206: | Zeile 194: | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 5.3: Streichholzkette'''</big> | <big>'''Aufgabe 5.3: Streichholzkette'''</big> | ||
Gib eine Gleichung an, die den Zusammenhang zwischen der Anzahl k der Quadrate und der Anzahl s der benötigten Streichhölzer allgemein beschreibt. | Gib eine Gleichung an, die den Zusammenhang zwischen der Anzahl k der Quadrate und der Anzahl s der benötigten Streichhölzer allgemein beschreibt. | ||
{{Lösung versteckt|1= | |||
:z.B.: s = 3k + 1 | :z.B.: s = 3k + 1 | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 6: Noten'''</big> | <big>'''Aufgabe 6: Noten'''</big> | ||
Das Kreisdiagramm zeigt die Notenverteilung einer Prüfung im Fach Englisch. | Das Kreisdiagramm zeigt die Notenverteilung einer Prüfung im Fach Englisch. | ||
[[Bild:AufgabeB17_Noten.jpg| | [[Bild:AufgabeB17_Noten.jpg|300px|center]] | ||
Welche der folgenden Aussagen zu diesem Kreisdiagramm ist richtig? Kreuze an. | Welche der folgenden Aussagen zu diesem Kreisdiagramm ist richtig? Kreuze an. | ||
Zeile 234: | Zeile 219: | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 7: Fisch'''</big> | <big>'''Aufgabe 7: Fisch'''</big> | ||
Zeile 242: | Zeile 226: | ||
[[Bild:AufgabeB18_Fisch.jpg|500px|center]] | [[Bild:AufgabeB18_Fisch.jpg|500px|center]] | ||
In welchem | In welchem Zeitraum ist die monatliche Fangmenge an Aal im Vergleich zum Vormonat laut Diagramm prozentual am meisten angestiegen? Kreuze an. | ||
(!von März nach April) (!von April nach Mai) (!von September nach Oktober) (von Januar nach Februar) | (!von März nach April) (!von April nach Mai) (!von September nach Oktober) (von Januar nach Februar) | ||
Zeile 248: | Zeile 232: | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 8: Schultaschen'''</big> | <big>'''Aufgabe 8: Schultaschen'''</big> | ||
Zeile 258: | Zeile 241: | ||
Mit Pauls Schultasche ergibt sich in dieser Tischgruppe ein druchschnittliches Gewicht von 4,9 kg. Welches Gewicht hatte Pauls Schultasche? | Mit Pauls Schultasche ergibt sich in dieser Tischgruppe ein druchschnittliches Gewicht von 4,9 kg. Welches Gewicht hatte Pauls Schultasche? | ||
{{Lösung versteckt|1= | |||
:5,8 kg | :5,8 kg | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 9.1: Preisänderungen im Mobilfunk'''</big> | <big>'''Aufgabe 9.1: Preisänderungen im Mobilfunk'''</big> | ||
Zeile 275: | Zeile 256: | ||
Frau Neukirchen hatte im Jahr 2000 Mobilfunkkosten von 720 Euro. Was hätte sie nach den Angaben aus der Grafik für diese Rechnung in den Jahren 2001 und 2002 bezahlt? Runde jeweils auf ganze Cent! | Frau Neukirchen hatte im Jahr 2000 Mobilfunkkosten von 720 Euro. Was hätte sie nach den Angaben aus der Grafik für diese Rechnung in den Jahren 2001 und 2002 bezahlt? Runde jeweils auf ganze Cent! | ||
{{Lösung versteckt|1= | |||
:*2001: 689,04 Euro | :*2001: 689,04 Euro | ||
:*2002: 748,30 Euro ''(ungerundete Ergebnisse werden als Fehler gewertet)'' | :*2002: 748,30 Euro ''(ungerundete Ergebnisse werden als Fehler gewertet)'' | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 9.2: Preisänderungen im Mobilfunk'''</big> | <big>'''Aufgabe 9.2: Preisänderungen im Mobilfunk'''</big> | ||
Um wie viel Prozent sind die Preise von 2002 gegenüber den Preisen von 2000 gestiegen? Kreuze an. | Um wie viel Prozent sind die Preise von 2002 gegenüber den Preisen von 2000 gestiegen? Kreuze an. | ||
(ca. 3,9 %) (!ca. 4,3 %) (!ca 8,6 %) (ca. 12,9 %) | (ca. 3,9 %) (!ca. 4,3 %) (!ca 8,6 %) (!ca. 12,9 %) | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 9.3: Preisänderungen im Mobilfunk'''</big> | <big>'''Aufgabe 9.3: Preisänderungen im Mobilfunk'''</big> | ||
Zeile 303: | Zeile 281: | ||
Wer von beiden hat recht? Begründe deine Entscheidung. | Wer von beiden hat recht? Begründe deine Entscheidung. | ||
{{Lösung versteckt|1= | |||
:richtige Antworten sind z.B.: | :richtige Antworten sind z.B.: | ||
:*'''Julia hat recht, denn''': Nach der Preiserhöhung 2003 liegt bei der Preissenkungum 1,1% in 2004 ein höherer Grundwert vor als im Jahre 2002 vor der Preiserhöhung um 1,1%. Es wird also mehr gesenkt als vorher angehoben. Demnach waren die Preise in 2004 niedriger als im Jahre 2002.“ | :*'''Julia hat recht, denn''': Nach der Preiserhöhung 2003 liegt bei der Preissenkungum 1,1% in 2004 ein höherer Grundwert vor als im Jahre 2002 vor der Preiserhöhung um 1,1%. Es wird also mehr gesenkt als vorher angehoben. Demnach waren die Preise in 2004 niedriger als im Jahre 2002.“ | ||
Zeile 310: | Zeile 288: | ||
:''Ich nehme an, dass Frau Neukirchen im Jahre 2002 eine Rechnung in Höhe von 100 € bezahlen musste. Dann betrug der Rechnungsbetrag im Jahr 2003 101 € (100 € • 1,01) und im Jahr 2004 99,89 € (101 € • 0,989). Demnach war der Rechnungsbetrag im Jahr 2004 geringer als im Jahr 2002.'' | :''Ich nehme an, dass Frau Neukirchen im Jahre 2002 eine Rechnung in Höhe von 100 € bezahlen musste. Dann betrug der Rechnungsbetrag im Jahr 2003 101 € (100 € • 1,01) und im Jahr 2004 99,89 € (101 € • 0,989). Demnach war der Rechnungsbetrag im Jahr 2004 geringer als im Jahr 2002.'' | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 10: Gelbgrüner Würfel'''</big> | <big>'''Aufgabe 10: Gelbgrüner Würfel'''</big> | ||
Zeile 324: | Zeile 301: | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 11: Der sechste Wurf'''</big> | <big>'''Aufgabe 11: Der sechste Wurf'''</big> | ||
Zeile 333: | Zeile 309: | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 12: Schrauben'''</big> | <big>'''Aufgabe 12: Schrauben'''</big> | ||
In einer Firma, in der Schrauben hergestellt werden, wird am Ende des Produktionsprozesses eine Endkontrolle durchgeführt. Eine überprüfte Kiste enthält 10000 Schrauben. Aus dieser Kiste werden zufällig 200 Schrauben ausgewählt | In einer Firma, in der Schrauben hergestellt werden, wird am Ende des Produktionsprozesses eine Endkontrolle durchgeführt. Eine überprüfte Kiste enthält 10000 Schrauben. Aus dieser Kiste werden zufällig 200 Schrauben ausgewählt und überprüft. 10 dieser Schrauben lagen außerhalb der Norm. | ||
Wie viel Schrauben, die nicht der Norm entsprechen, sind ungefähr in der ganzen Kiste enthalten? Kreuze an. | Wie viel Schrauben, die nicht der Norm entsprechen, sind ungefähr in der ganzen Kiste enthalten? Kreuze an. | ||
Zeile 344: | Zeile 319: | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 13.1: Temperatur'''</big> | <big>'''Aufgabe 13.1: Temperatur'''</big> | ||
Zeile 351: | Zeile 325: | ||
:{| class=" | :{| class="wikitable" | ||
|+ Temperaturen in Grad Celsius | |+Temperaturen in Grad Celsius | ||
|- style="background: #DDFFDD;" | |- style="background: #DDFFDD;" | ||
! | ! | ||
! 6 Uhr | !6 Uhr | ||
! 9 Uhr | !9 Uhr | ||
! 12 Uhr | !12 Uhr | ||
! 15 Uhr | !15 Uhr | ||
! 18 Uhr | !18 Uhr | ||
! 21 Uhr | !21 Uhr | ||
|- | |- | ||
| '''Montag''' | |'''Montag''' | ||
| 13,5° | |13,5° | ||
| 17,0° | |17,0° | ||
| 21,5° | |21,5° | ||
| 22,5° | |22,5° | ||
| 21,0° | |21,0° | ||
| 17,5° | |17,5° | ||
|- | |- | ||
| '''Dienstag''' | |'''Dienstag''' | ||
| 14,0° | |14,0° | ||
| 19,0° | |19,0° | ||
| 25,0° | |25,0° | ||
| 27,0° | |27,0° | ||
| 25,5° | |25,5° | ||
| 20,5° | |20,5° | ||
|- | |- | ||
| '''Mittwoch''' | |'''Mittwoch''' | ||
| 15,5° | |15,5° | ||
| 19,5° | |19,5° | ||
| 25,5° | |25,5° | ||
| 28,0° | |28,0° | ||
| 26,0° | |26,0° | ||
| 19,5° | |19,5° | ||
|- | |- | ||
| '''Donnerstag''' | |'''Donnerstag''' | ||
| 14,5° | |14,5° | ||
| 15,5° | |15,5° | ||
| 19,0° | |19,0° | ||
| 19,5° | |19,5° | ||
| 16,0° | |16,0° | ||
| 13,5° | |13,5° | ||
|- | |- | ||
|} | |} | ||
Zeile 398: | Zeile 372: | ||
Wann wurde die niedrigste Temperatur gemessen? Kreuze '''alle''' richtigen Antworten an. | Wann wurde die niedrigste Temperatur gemessen? Kreuze '''alle''' richtigen Antworten an. | ||
(!Donnerstag um 9 Uhr) (Montag um | (!Donnerstag um 9 Uhr) (Montag um 6 Uhr) (!Mittwoch um 15 Uhr) (Donnerstag um 21 Uhr) (!Dienstag um 6 Uhr) | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 13.2: Temperatur'''</big> | <big>'''Aufgabe 13.2: Temperatur'''</big> | ||
Welcher Tag war der wärmste? Begründe deine Entscheidung mit den Temperaturangaben aus der Tabelle von | Welcher Tag war der wärmste? Begründe deine Entscheidung mit den Temperaturangaben aus der Tabelle von 13.1. | ||
{{Lösung versteckt|1= | |||
*'''Antwort „Mittwoch“ mit angemessener Begründung,''' z.B.: | *'''Antwort „Mittwoch“ mit angemessener Begründung,''' z.B.: | ||
#''Die Durchschnittstemperatur war am Mittwoch am höchsten. (wobei hier das arithmetische Mittel jeden Tages berechnet werden muss oder in einer korrekten Form argumentiert werden muss, dass die Durchschnittstemperatur am Mittwoch am höchsten war – Durchschnittstemperaturen: Mo 18,83 °C… Di 21,83 °C… Mi 22,3 °C… Do 16,3 °C…)'' | #''Die Durchschnittstemperatur war am Mittwoch am höchsten. (wobei hier das arithmetische Mittel jeden Tages berechnet werden muss oder in einer korrekten Form argumentiert werden muss, dass die Durchschnittstemperatur am Mittwoch am höchsten war – Durchschnittstemperaturen: Mo 18,83 °C… Di 21,83 °C… Mi 22,3 °C… Do 16,3 °C…)'' | ||
Zeile 414: | Zeile 388: | ||
*'''oder Antwort „Dienstag“ mit angemessener Begründung''', z.B.: | *'''oder Antwort „Dienstag“ mit angemessener Begründung''', z.B.: | ||
#''Dienstag ist der einzige Tag, an dem die Temperatur zu vier Messzeitpunkten über 20 °C betrug''. | #''Dienstag ist der einzige Tag, an dem die Temperatur zu vier Messzeitpunkten über 20 °C betrug''. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
}} | |||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 14: Internetnutzung'''</big> | <big>'''Aufgabe 14: Internetnutzung'''</big> | ||
Zeile 436: | Zeile 408: | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 15: Zahlenstrahl'''</big> | <big>'''Aufgabe 15: Zahlenstrahl'''</big> | ||
[[Bild:AufgabeC_15 Zahlenstrahl.jpg| | [[Bild:AufgabeC_15 Zahlenstrahl.jpg|600px|center]] | ||
Trage in die leeren Kästchen die zugehörigen Zahlen ein. | Trage in die leeren Kästchen die zugehörigen Zahlen ein. | ||
{{Lösung versteckt|1= | |||
-2,5 1,2 3,5 | -2,5 1,2 3,5 | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 16.1: Quersumme'''</big> | <big>'''Aufgabe 16.1: Quersumme'''</big> | ||
Zeile 463: | Zeile 434: | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 16.2: Quersumme'''</big> | <big>'''Aufgabe 16.2: Quersumme'''</big> | ||
Sabine hat die Quersumme einer vierstelligen Zahl berechnet und als Ergebnis 38 erhalten. Nimm zu diesem Ergebnis Stellung. | Sabine hat die Quersumme einer vierstelligen Zahl berechnet und als Ergebnis 38 erhalten. Nimm zu diesem Ergebnis Stellung. | ||
{{Lösung versteckt|1= | |||
:Sabine hat sich verrechnet. Mögliche Begründungen: | :Sabine hat sich verrechnet. Mögliche Begründungen: | ||
#Die Quersumme einer vierstelligen Zahl ist höchstens 9+9+9+9 = 36. | :#Die Quersumme einer vierstelligen Zahl ist höchstens 9+9+9+9 = 36. | ||
#38 kann nicht sein, da 36 die höchste Quersumme ist. | :#38 kann nicht sein, da 36 die höchste Quersumme ist. | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 17: Zapfsäule 1'''</big> | |||
<big>'''Aufgabe | |||
[[Bild:AufgabeA4_Zapfsäule.jpg|400px|center]] | [[Bild:AufgabeA4_Zapfsäule.jpg|400px|center]] | ||
Eine Tankstelle informiert mit dem Aufkleber "Je Euro 73 Cent Steuern" über die Steuerbelastung beim Benzinpreis. | Eine Tankstelle informiert mit dem Aufkleber "Je Euro 73 Cent Steuern" über die Steuerbelastung beim Benzinpreis. | ||
Zeile 487: | Zeile 455: | ||
(!15,80€) (!34,47€) (42,71€) (73,-€) (!90,45€) | (!15,80€) (!34,47€) (42,71€) (!73,-€) (!90,45€) | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 18: Benzinverbrauch'''</big> | <big>'''Aufgabe 18: Benzinverbrauch'''</big> | ||
Zeile 499: | Zeile 465: | ||
Bei der Berechnung des durchschnittlichen Benzinverbrauchs eines Neuwagens auf 100 km werden dann zu gleichen Teilen der Verbrauch auf der Autobahn, in der Stadt und auf der Landstraße berücksichtigt. | Bei der Berechnung des durchschnittlichen Benzinverbrauchs eines Neuwagens auf 100 km werden dann zu gleichen Teilen der Verbrauch auf der Autobahn, in der Stadt und auf der Landstraße berücksichtigt. | ||
{|border="1"| | {| border="1" | | ||
|'''Fahrten''' | |'''Fahrten''' | ||
|'''Gefahrene Strecke in km''' | |'''Gefahrene Strecke in km''' | ||
Zeile 519: | Zeile 485: | ||
Berechne den durchschnittlichen Benzinverbrauch des Neuwagens auf 100 km. | Berechne den durchschnittlichen Benzinverbrauch des Neuwagens auf 100 km. | ||
{{Lösung versteckt|1= | |||
Es werden 7 Liter im Durchschnitt verbraucht. | :Es werden 7 Liter im Durchschnitt verbraucht. | ||
Autobahn Stadt Landstraße | Autobahn Stadt Landstraße | ||
32,4 Liter : 4,5 = 7,2 Liter 19,5 Liter : 2,5 = 7,8 Liter 21 Liter : 3,5 =6 Liter | 32,4 Liter : 4,5 = 7,2 Liter 19,5 Liter : 2,5 = 7,8 Liter 21 Liter : 3,5 =6 Liter | ||
7,2 Liter + 7,8 Liter + 6 Liter = 21 Liter; | 7,2 Liter + 7,8 Liter + 6 Liter = 21 Liter; | ||
21 Liter : 3 = '''7 Liter''' | 21 Liter : 3 = '''7 Liter''' | ||
}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
</div> | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 19: Primzahl'''</big> | <big>'''Aufgabe 19: Primzahl'''</big> | ||
Begründe, dass die Summe von 4 aufeinanderfolgenden natürlichen Zahlen keine Primzahl sein kann. | Begründe, dass die Summe von 4 aufeinanderfolgenden natürlichen Zahlen keine Primzahl sein kann. | ||
| | {{Lösung versteckt|1= | ||
*'''Algebraischer Ansatz''', z.B.: | |||
''Wenn n die erste dieser vier Zahlen ist, dann gilt: | |||
:n + (n + 1) + (n + 2) + (n + 3) = 4n + 6 = 2(2n + 3); dies ist durch 2 teilbar und somit kann die Summe aus vier aufeinander folgender Zahlen keine Primzahl sein.'' | |||
*'''oder inhaltlicher Ansatz''', z.B.: | |||
:''Bei vier aufeinander folgenden natürlichen Zahlen werden zwei gerade und zwei ungerade Zahlen miteinander addiert. Die Summe zweier gerader Zahlen ergibt eine gerade Zahl und die Summe zweier ungerader Zahlen ergibt ebenfalls eine gerade Zahl. Die Summe dieser beiden Zahlen ergibt wieder eine gerade Zahl. Diese ist durch zwei teilbar, so dass die Summe von vier aufeinander folgenden Zahlen keine Primzahl sein kann.'' | |||
*'''oder iterativer Ansatz''', z.B.: | |||
:1 + 2 + 3 + 4 = 10 und 10 ist durch 2 teilbar (also keine Primzahl) | |||
:2 + 3 + 4 + 5 = 14 ist durch 2 teilbar (also keine Primzahl) | |||
:und so weiter… | |||
:Die Summe wächst jeweils um 4 und bleibt deswegen ständig durch 2 teilbar. Also kann die Summe aus vier aufeinander folgenden Zahlen keine Primzahl sein. | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
</div> | |||
<div class="rahmen"> | |||
<big>'''Aufgabe 20.1: Notendurchschnitte'''</big> | |||
Berechne den Durchschnitt der Noten der Klasse 9a. Runde auf eine Stelle nach dem Komma. | |||
::{| cellspacing="0" cellpadding="15" border="1" | |||
|'''Note'''||1||2||3||4||5||6||Durchschnitt | |||
|- | |||
|'''Anzahl'''||7||6||3||0||0||4||??? | |||
|} | |||
{{Lösung versteckt|1= | |||
:2,6 | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
</div> | |||
<div class="rahmen"> | |||
<big>'''Aufgabe 20.2: Notendurchschnitte'''</big> | |||
Gib eine mögliche Notenverteilung für 20 Schüler/innen an, so dass der Notendurchschnitt genau 3,0 beträgt. | |||
::{| cellspacing="0" cellpadding="15" border="1" | |||
|'''Note'''||1||2||3||4||5||6||Durchschnitt | |||
|- | |||
|'''Anzahl'''|| || || || || || ||3,0 | |||
|} | |||
{{Lösung versteckt|1= | |||
:Es gibt verschiedene Lösungen, z.B.: | |||
:[[Bild:AufgabeC20_Notendurchschnitt.jpg]] | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
</div> | |||
<div class="multiplechoice-quiz"> | |||
< | |||
<big>'''Aufgabe 21: Runden'''</big> | <big>'''Aufgabe 21: Runden'''</big> | ||
Zeile 584: | Zeile 560: | ||
Kreuze an. | Kreuze an. | ||
(!Um 3 Einer) (!Um 4 Einer) (!Um 5 Einer) (Um 9 Einer) (!Um 10 Einer) | |||
</div> | |||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 22: Rabatt'''</big> | <big>'''Aufgabe 22: Rabatt'''</big> | ||
Zeile 594: | Zeile 572: | ||
Der Einkaufspreis für einen MP3-Player beträgt 40,- €. Bei Abnahme von mindestens 100 Stück werden 10 % und bei Abnahme von mindestens 150 Stück werden 15 % Mengenrabatt gegeben. | Der Einkaufspreis für einen MP3-Player beträgt 40,- €. Bei Abnahme von mindestens 100 Stück werden 10 % und bei Abnahme von mindestens 150 Stück werden 15 % Mengenrabatt gegeben. | ||
Welche Aussage ist falsch? | |||
(Kauft Elektro-Meier 35 Stück ein, so bekommt er insgesamt 140,- € Rabatt.) (Wenn Elektro-Meier mindestens 50, aber höchstens 75 Stück einkauft, erhält er einen Rabatt von 2,- € pro Stück.) | |||
</div> | |||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 23: Cornflakes'''</big> | <big>'''Aufgabe 23: Cornflakes'''</big> | ||
[[Bild:AufgabeC23_Cornflakes.jpg|400px|center]] | |||
Die beiden abgebildeten Packungen für Cornflakes haben die gleiche Form und sind beide vollständig mit Cornflakes gefüllt. Die kleine Packung enthält die Menge Cornflakes, die normalerweise für eine Person reicht. Wie viele solcher Portionen Cornflakes enthält dann die Familienpackung? | Die beiden abgebildeten Packungen für Cornflakes haben die gleiche Form und sind beide vollständig mit Cornflakes gefüllt. Die kleine Packung enthält die Menge Cornflakes, die normalerweise für eine Person reicht. Wie viele solcher Portionen Cornflakes enthält dann die Familienpackung? | ||
Kreuze an. | Kreuze an. | ||
(!2) (!4) (!6) (8) (!12) | |||
</div> | |||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 24: Dreieck'''</big> | <big>'''Aufgabe 24: Dreieck'''</big> | ||
[[Bild:AufgabeC24_Dreieck.jpg|400px|center]] | |||
Die (nicht maßstäbliche) Skizze zeigt das Dreieck ABC mit einem Umfang von 80 cm. c ist die längste Seite des Dreiecks. | Die (nicht maßstäbliche) Skizze zeigt das Dreieck ABC mit einem Umfang von 80 cm. c ist die längste Seite des Dreiecks. | ||
'''Kreuze die richtige Aussage an.''' | |||
(!<math>\gamma = \alpha</math>) (!<math>\gamma < \alpha</math>) (<math>\gamma > \beta</math>) (!<math>\gamma < \beta</math>) | |||
''' | '''Kreuze die richtige Aussage an.''' | ||
(!a = 40cm) (a < 40cm) (!a > 40cm) (!a = 80cm) | |||
Kreuze die richtige Aussage an. | </div> | ||
<div class="rahmen"> | |||
<big>'''Aufgabe 25: Winkelgröße'''</big> | <big>'''Aufgabe 25: Winkelgröße'''</big> | ||
Die Geraden t, h, und s verlaufen parallel zueinander. Bestimme den Winkel ß. Dein Vorgehen soll nachvollziehbar sein. | Die Geraden t, h, und s verlaufen parallel zueinander. Bestimme den Winkel ß. Dein Vorgehen soll nachvollziehbar sein. | ||
[[Bild:AufgabeC25_Winkelgröße.jpg|300px|center]] | |||
<small>Hinweis: Die Zeichnung ist nicht maßstabsgerecht!</small> | |||
{{Lösung versteckt|1= | |||
:'''30<sup>0'''</sup> | |||
:Begründung z.B.: | |||
[[Bild:AufgabeC25_Winkelgröße_Lös.jpg|300px|center]] | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
</div> | |||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 26: Puzzleteile'''</big> | <big>'''Aufgabe 26: Puzzleteile'''</big> | ||
Welches dieser Puzzleteile hat den größten Flächeninhalt? Kreuze an. | |||
(![[Bild:AufgabeA10_Puzzle1.jpg|100px]]) (![[Bild:AufgabeA10_Puzzle2.jpg|100px]]) (![[Bild:AufgabeA10_Puzzle3.jpg|100px]]) (![[Bild:AufgabeA10_Puzzle4.jpg|100px]]) ([[Bild:AufgabeA10_Puzzle5.jpg|100px]]) | |||
</div> | |||
<div class="zuordnungs-quiz"> | |||
<big>'''Aufgabe 27: Konstruierbare Dreiecke'''</big> | <big>'''Aufgabe 27: Konstruierbare Dreiecke'''</big> | ||
Entscheide jeweils, ob sich mit den unten angegebenen Bestimmungsstücken (siehe auch Zeichnung) ein Dreieck (bis auf seine Lage) eindeutig konstruieren lässt. | Entscheide jeweils, ob sich mit den unten angegebenen Bestimmungsstücken (siehe auch Zeichnung) ein Dreieck (bis auf seine Lage) eindeutig konstruieren lässt. Ordne. | ||
[[Bild:AufgabeC27_Dreiecke.jpg|300px|center]] | |||
<small>Hinweis: Die Zeichnung ist nicht maßstabsgerecht!</small> | |||
{| | |||
|Bestimmungsstücke sind richtig||<math>c = 5,8cm ; \alpha = 40^0 ; \beta = 68^0</math>||<math>b = 8,8cm ; c = 5,6cm ; \alpha = 53^0 </math>||<math>c = 5,8cm ; a = 7,4cm ; \alpha = 68^0</math> | |||
|- | |||
|Bestimmungsstücke sind falsch||<math>\gamma = 72^0 ; \alpha = 40^0 ; \beta = 68^0</math>||<math>c = 6cm ; a = 4cm ; \alpha = 70^0</math> | |||
|} | |||
</div> | |||
<div class="rahmen"> | |||
<big>'''Aufgabe 28: Spiegelachse'''</big> | <big>'''Aufgabe 28: Spiegelachse'''</big> | ||
Das Dreieck A'B'C' ist das Ergebnis einer Achsenspiegelung des Dreiecks ABC. | |||
Zeichne die Spiegelachse g ein. | |||
[[Bild:AufgabeA32_Spiegelachse.jpg|350px|center]] | |||
{{Lösung versteckt| | |||
[[Bild:AufgabeA32_Spiegelachse_Lös.jpg|350px|center]] | |||
|Lösung anzeigen|Lösung verbergen}} | |||
</div> | |||
<div class="multiplechoice-quiz"> | |||
<big>'''Aufgabe 29: Trapez'''</big> | |||
Kreuze die Eigenschaft an, die für jedes beliebige gleichschenklige Trapez gilt. | |||
(!Die Diagonalen stehen senkrecht aufeinander.) (Die Diagonalen sind gleich lang.) (!Je zwei gegenüberliegende Seiten sind gleich lang.) (!Je zwei gegenüberliegende Seiten sind parallel.) | |||
</div> | |||
<div class="rahmen"> | |||
<big>'''Aufgabe 30: Flussbreite'''</big> | <big>'''Aufgabe 30: Flussbreite'''</big> | ||
Zeile 668: | Zeile 674: | ||
[[ | {{Lösung versteckt|1= | ||
:Die Flussbreite beträgt etwa 35m bis 40m. | |||
[[Bild:AufgabeC30_Flussbreite_Lös.jpg|350px|center]] | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |||
</div> | |||
{{DEFAULTSORT:Mathematik/Test C}} | |||
[[Kategorie:Vera 8]] | |||
[[Kategorie:Vergleichsarbeiten]] | |||
[[Kategorie:Mathematik-digital]] | |||
[[Kategorie:Sekundarstufe 1]] | |||
[[Kategorie:Interaktive Übung]] | |||
[[Kategorie:R-Quiz]] |
Aktuelle Version vom 23. April 2022, 17:56 Uhr
Aufgabe 1.1: Rapido
Aus der Preistabelle des Paketdienstes "Rapido" kann man
zu jedem Paketgewicht den zugehörigen Preis ablesen:
bis 1 kg 3,50 € Über 1 kg bis 2 kg 4,00 € Über 2 kg bis 3 kg 4,50 € Über 3 kg bis 5 kg 5,00 € Über 5 kg bis 8 kg 5,50 € Über 8 kg bis 10 kg 6,00 €
Beantworte mit Hilfe der Tabelle folgende Frage.
Wie viel kostet ein Paket, das 9 kg wiegt? Kreuze die richtige Lösung an.
(!5,00 €) (6,00 €) (!9,00 €) (!13,50 €)
Aufgabe 1.2: Rapido
Beantworte mit Hilfe der Tabelle aus 1.1 folgende Frage.
Wie schwer darf ein Paket sein, für das man 5,00 € bezahlt? Kreuze die richtige Lösung an.
(!Genau 4 kg) (!Höchstens 10 kg) (Über 3 kg bis 5 kg) (!Über 5 kg bis 8 kg)
Aufgabe 2: Zwei Fässer
Jedes der beiden dargestellten Fässer fasst genau 100l. Sie werden mit Wasser gefüllt. Zu Beginn des Füllvorgangs enthält Fass 2 bereits 60l. Fass 1 wird mit 2 l/min gleichmäßig gefüllt, Fass 2 mit 0,5 l/min.
Stimmt es, dass Fass 2 zuerst überläuft? Schreib auf, wie du zu deiner Entscheidung gekommen bist.
- Nein mit mindestens einer der folgenden Begründungen
- Wertetabelle
- (kleinere Rechenfehler sind in der Tabelle erlaubt – wichtig ist aber, dass grundsätzlich die eine Spalte jeweils um 20 und die andere um 5 zunimmt)
- oder Berechnung der Zeitpunkte des Überlaufs:
- Fass I : 2 x = 100
- x = 50 => Fass I läuft nach 50 Min. über.
- Fass II: 0,5 x + 60 = 100
- x = 80 => Fass II läuft nach 80 Min. über.
- oder graphische Lösung
- oder graphische Lösung
- oder weitere richtige Antworten mit richtiger Begründung, z.B.:
- Fass 2: 40l für 80min und Fass 1 160l für 80min
Gibt es einen Zeitpunkt, zu dem das Wasser in beiden Fässern gleich hoch steht? Schreibe auf, wie du zu deiner Antwort kommst.
- Ja und Beschreibung einer korrekten/ angemessenen Vorgehensweise,:
- Ablesen aus zu A1 erstellter Tabelle, z B.: Nach 40 Minuten haben beide Fässer gleichen Stand (siehe 2.1).
- oder neue Berechnung, z. B.:
- Nach 30 Min. hat Fass I soviel Wasser, wie Fass II seit Beginn hatte.
- Nach 30 Min. hat Fass II bei 1,5 Min --> 15 l nach 30 Min insgesamt 60 l + 15 l, ergibt 75 l.
- Minuten Fass I Fass II
- 30’ 60l 75l
- 31’ 62
- 32’ 64 76
- 33’ 66
- 34’ 68 77
- 35’ 70
- 36’ 72 78
- 37’ 74
- 38’ 76 79
- 39’ 78
- 40’ 80 80
- Nach 40 Min. haben beide Fässer die gleiche Füllhöhe, nämlich 80l.
- oder Aufstellen der Funktionsgleichungen für beide Fässer, z. B.:
- y = Füllmenge und x = Zeit:
- I y = 2x
- II y = 0,5x + 60
- Durch Gleichsetzen folgt:
- 2x = 0,5x + 60
- 1,5x = 60
- x = 40
- y = 2 *40 = 80
- Antwort: Nach 40 Min. Gleichstand bei 80 Litern.“
- oder Ausprobieren, z.B.
- „Fass I ist in 30min zu 60% voll, Fass II zu 75%
- Fass I ist in 40min zu 80% voll, Fass II auch zu 80%
- Nach 40 Minuten sind beide gleich voll.“
- oder inhaltliche Lösung, z. B.:
- Da Fass 1 leer startet, aber vor Fass 2 überläuft (Aufgabe a) muss die Füllhöhe des Fasses 1 die des Fasses 2 irgendwann „überholen“. Dies ist genau der Zeitpunkt zu dem das Wasser in beiden Fässern gleich hoch ist.
Nach 80 Minuten, weil genau dann beide Fässer voll sind.
- oder andere richtige Begründung, z.B.:
- Nach 3 Jahren (oder irgendeinem anderen ausgedachten Zeitraum), weil dann beide Fässer überlaufen.
Aufgabe 3: Nachbarschaftshilfe
Drei Schüler erledigen für einen kranken Nachbarn die Gartenarbeit. Fritz hat viel Zeit und fängt schon um 14 Uhr an zu arbeiten. Hans kommt um 15 Uhr und Max um 15:30 Uhr. Um 17 Uhr ist die Arbeit für alle drei erledigt. Der Nachbar gibt den Schülern 50,- € mit der Bitte, das Geld möglichst entsprechend der jeweils geleisteten Arbeitszeit zu verteilen.
Wie viel Geld sollte jeder bekommen? Schreibe auf, wie du vorgehst.
- z.B.:
- Fritz: 17 - 14 Stunden
- Hans: 17 - 15 Stunden
- Max: 17 - 15,50 = 1,5 Stunden
- Abrechnung pro Stunde ergibt:
- Fritz: 23,07 €
- Hans: 15,38 €
- Max: 11,54 €
Aufgabe 4.1: Verknüpfungen
Für zwei Zahlen x und y soll gelten: x + y = 1.
Kreuze die richtige Aussage an.
(!Wenn x negativ ist, dann ist auch y negativ.) (!Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (Wenn x kleiner ist als 1, dann ist y positiv.) (!x und y müssen verschiedene Vorzeichen haben.)
Aufgabe 4.2: Verknüpfungen
Für zwei Zahlen x und y soll gelten: x · y = 1.
Kreuze die richtige Aussage an.
(!Wenn x negativ ist, dann ist y positiv.) (!Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (!Wenn x kleiner ist als 1, dann ist y negativ.) (x und y müssen dasselbe Vorzeichen haben.)
Aufgabe 4.3: Verknüpfungen
Für zwei Zahlen x und y soll gelten: . Kreuze die richtige Aussage an.
(!Wenn x negativ ist, dann ist y positiv.) (Wenn x größer ist als 1, dann ist auch y größer als 1.) (!Weder x noch y können negativ sein.) (!Wenn x kleiner ist als 1, dann ist y negativ.) (!x und y müssen verschiedene Vorzeichen haben.)
Aufgabe 5: Streichholzkette
Mit Streichhölzern kann man Ketten mit Quadraten legen.
Schreibe jeweils die Anzahl der benötigten Streichhölzer in die freien Kästchen.
- bei 3 Quadraten 10 Streichhölzer und bei 4 Quadraten 13 Streichhölzer
Aufgabe 5.2: Streichholzkette
Wie viele Streichhölzer werden für 12 solche Quadrate benötigt? Kreuze die richtige Antwort an.
(!23) (!24) (!36) (37) (!48)
Aufgabe 5.3: Streichholzkette
Gib eine Gleichung an, die den Zusammenhang zwischen der Anzahl k der Quadrate und der Anzahl s der benötigten Streichhölzer allgemein beschreibt.
- z.B.: s = 3k + 1
Aufgabe 6: Noten
Das Kreisdiagramm zeigt die Notenverteilung einer Prüfung im Fach Englisch.
Welche der folgenden Aussagen zu diesem Kreisdiagramm ist richtig? Kreuze an.
(!Es gibt öfter die Note 2 als die Note 4.) (!Ein Drittel der Schülerinnen und Schüler hat die Note 1 oder die Note 2.) (Mehr als 50% der Schülerinnen und Schüler haben eine bessere Note als die Note 4.) (!Weniger als ein Viertel der Schülerinnen und Schüler haben die Note 3.)
Aufgabe 7: Fisch
Das Diagramm zeigt die Menge gefangenen Fischs in jedem Monat.
In welchem Zeitraum ist die monatliche Fangmenge an Aal im Vergleich zum Vormonat laut Diagramm prozentual am meisten angestiegen? Kreuze an.
(!von März nach April) (!von April nach Mai) (!von September nach Oktober) (von Januar nach Februar)
Aufgabe 8: Schultaschen
Die Schülerinnen und Schüler der Klasse 5a sitzen in Tischgruppen zu jeweils 5 oder 6 Schülerinnen und Schülern. Heute werden im Unterricht die Schultaschen gewogen.
Paul kommt zu spät. Die anderen aus seiner Tischgruppe haben bis dahin schon ihre Taschen gewogen: 3,7 kg, 4,6 kg, 4,8 kg, 5,2 kg, 5,3 kg.
Mit Pauls Schultasche ergibt sich in dieser Tischgruppe ein druchschnittliches Gewicht von 4,9 kg. Welches Gewicht hatte Pauls Schultasche?
- 5,8 kg
Aufgabe 9.1: Preisänderungen im Mobilfunk
In dem Diagramm wird dargestellt, wie sich die Preise für Mobilfunk im Vergleich zum Vorjahr prozentual geändert haben. Zum Beispiel sind 2002 die Preise im Vergleich zu 2001 um 8,6 % angestiegen, während die Preise im Vergleich zu 2005 um 10,7 % gefallen sind.
Frau Neukirchen hatte im Jahr 2000 Mobilfunkkosten von 720 Euro. Was hätte sie nach den Angaben aus der Grafik für diese Rechnung in den Jahren 2001 und 2002 bezahlt? Runde jeweils auf ganze Cent!
- 2001: 689,04 Euro
- 2002: 748,30 Euro (ungerundete Ergebnisse werden als Fehler gewertet)
Aufgabe 9.2: Preisänderungen im Mobilfunk
Um wie viel Prozent sind die Preise von 2002 gegenüber den Preisen von 2000 gestiegen? Kreuze an.
(ca. 3,9 %) (!ca. 4,3 %) (!ca 8,6 %) (!ca. 12,9 %)
Aufgabe 9.3: Preisänderungen im Mobilfunk
Marvin behauptet: "2004 waren die Preise genauso hoch wie 2002."
Julia sagt: "Nein, sie waren niedriger."
Wer von beiden hat recht? Begründe deine Entscheidung.
- richtige Antworten sind z.B.:
- Julia hat recht, denn: Nach der Preiserhöhung 2003 liegt bei der Preissenkungum 1,1% in 2004 ein höherer Grundwert vor als im Jahre 2002 vor der Preiserhöhung um 1,1%. Es wird also mehr gesenkt als vorher angehoben. Demnach waren die Preise in 2004 niedriger als im Jahre 2002.“
- Julia hat recht, denn 1•1,01•0,989 = 0,99889.
- auch die Berechnung eines Beispiels wird als richtig gewertet,z.B.:
- Ich nehme an, dass Frau Neukirchen im Jahre 2002 eine Rechnung in Höhe von 100 € bezahlen musste. Dann betrug der Rechnungsbetrag im Jahr 2003 101 € (100 € • 1,01) und im Jahr 2004 99,89 € (101 € • 0,989). Demnach war der Rechnungsbetrag im Jahr 2004 geringer als im Jahr 2002.
Aufgabe 10: Gelbgrüner Würfel
Jede der sechs Flächen eines Würfels ist entweder gelb oder grün angestrichen. Beim Würfeln ist die Wahrscheinlichkeit , dass gelb oben liegt.
Kreuze an, wie viele Flächen grün sind. (!eine) (!zwei) (!drei) (vier) (!fünf)
Aufgabe 11: Der sechste Wurf
Ein normaler Spielwürfel wird geworfen. In fünf aufeinander folgenden Würfen landet der Würfel jedes Mal so, dass eine gerade Zahl angezeigt wird. Nun wird der Würfel ein sechstes Mal geworfen. Welche der folgenden Aussagen triftt dann zu? Kreuze an.
(!Es ist wahrscheinlicher, dass der Würfel eine gerade Zahl zeigt, als dass er eine ungerade Zahl zeigt.) (!Es ist wahrscheinlicher, dass der Würfel eine ungerade Zahl zeigt, als dass er eine gerade Zahl zeigt.) (Es ist gleich wahrscheinlich, dass eine gerade Zahl oder eine ungerade Zahl gezeigt wird.) (!Der Würfel zeigt mit Sicherheit eine ungerade Zahl.)
Aufgabe 12: Schrauben
In einer Firma, in der Schrauben hergestellt werden, wird am Ende des Produktionsprozesses eine Endkontrolle durchgeführt. Eine überprüfte Kiste enthält 10000 Schrauben. Aus dieser Kiste werden zufällig 200 Schrauben ausgewählt und überprüft. 10 dieser Schrauben lagen außerhalb der Norm.
Wie viel Schrauben, die nicht der Norm entsprechen, sind ungefähr in der ganzen Kiste enthalten? Kreuze an.
(!20) (!50) (!200) (500) (! 2000)
Aufgabe 13.1: Temperatur
In dieser Tabelle stehen Temperaturangaben, die jeweils zu festen Uhrzeiten gemessen wurden.
Temperaturen in Grad Celsius 6 Uhr 9 Uhr 12 Uhr 15 Uhr 18 Uhr 21 Uhr Montag 13,5° 17,0° 21,5° 22,5° 21,0° 17,5° Dienstag 14,0° 19,0° 25,0° 27,0° 25,5° 20,5° Mittwoch 15,5° 19,5° 25,5° 28,0° 26,0° 19,5° Donnerstag 14,5° 15,5° 19,0° 19,5° 16,0° 13,5°
Wann wurde die niedrigste Temperatur gemessen? Kreuze alle richtigen Antworten an.
(!Donnerstag um 9 Uhr) (Montag um 6 Uhr) (!Mittwoch um 15 Uhr) (Donnerstag um 21 Uhr) (!Dienstag um 6 Uhr)
Aufgabe 13.2: Temperatur
Welcher Tag war der wärmste? Begründe deine Entscheidung mit den Temperaturangaben aus der Tabelle von 13.1.
- Antwort „Mittwoch“ mit angemessener Begründung, z.B.:
- Die Durchschnittstemperatur war am Mittwoch am höchsten. (wobei hier das arithmetische Mittel jeden Tages berechnet werden muss oder in einer korrekten Form argumentiert werden muss, dass die Durchschnittstemperatur am Mittwoch am höchsten war – Durchschnittstemperaturen: Mo 18,83 °C… Di 21,83 °C… Mi 22,3 °C… Do 16,3 °C…)
- Am Mittwoch war es tagsüber bei jeder Messung am wärmsten. Nur abends war es am Dienstag wärmer.
- Am Mittwoch wurde die höchste Temperatur gemessen.
- oder Antwort „Dienstag“ mit angemessener Begründung, z.B.:
- Dienstag ist der einzige Tag, an dem die Temperatur zu vier Messzeitpunkten über 20 °C betrug.
Aufgabe 14: Internetnutzung
56% der Internetnutzer sind täglich oder fast täglich online
Die Nutzung des Internets hat in Deutschland weiter zugenommen. Fast zwei Drittel der Personen ab zehn Jahren (65%) nutzten im ersten Quartal 2006 das Internet. Dies geht aus der aktuellen Auswertung der Befragung privater Haushalte zur Nutzung von Informations- und Kommunikationtechnologien hervor. [...] Innerhalb der Gruppe der Internetnutzer ging im ersten Quartal 2006 mehr als die Hälfte (56%) täglich oder fast täglich online, ein Jahr zuvor waren es noch 50% der Internetnutzer.
(Statistisches Bundesamt)
Welcher Prozentsatz der Personen ab 10 Jahren ging damit im ersten Quartal 2006 täglich oder fast täglich online?
Kreuze an, welcher Wert deinem Ergebnis am nächsten liegt.
(36%) (!56%) (!65%) (!86%) (!121%)
Aufgabe 16.1: Quersumme
Die Quersumme einer Zahl erhält man, wenn man ihre Ziffern addiert.
Beispiel: Die Zahl 3104 hat die Quersumme 3 + 1 + 0 + 4 = 8
Welches ist die kleinste vierstellige Zahl mit der Quersumme 12?
(!129) (!1002) (1029) (!1119) (!1236)
Aufgabe 16.2: Quersumme Sabine hat die Quersumme einer vierstelligen Zahl berechnet und als Ergebnis 38 erhalten. Nimm zu diesem Ergebnis Stellung.
- Sabine hat sich verrechnet. Mögliche Begründungen:
- Die Quersumme einer vierstelligen Zahl ist höchstens 9+9+9+9 = 36.
- 38 kann nicht sein, da 36 die höchste Quersumme ist.
Aufgabe 17: Zapfsäule 1
Eine Tankstelle informiert mit dem Aufkleber "Je Euro 73 Cent Steuern" über die Steuerbelastung beim Benzinpreis. Wie viel erhält der Staat bei der dargestellten Tankfüllung an Steuern? Kreuze die richtige Antwort an.
(!15,80€) (!34,47€) (42,71€) (!73,-€) (!90,45€)
Aufgabe 18: Benzinverbrauch
Um die Angabe zum durchschnittlichen Benzinverbrauch eines Neuwagens auf 100 km in einem Werbeprospekt zu überprüfen, werden Fahrten auf der Autobahn, auf der Landstraße und in der Stadt durchgeführt. Dabei geht man jeweils von einem konstanten Verbrauch des Fahrzeugs aus.
Bei der Berechnung des durchschnittlichen Benzinverbrauchs eines Neuwagens auf 100 km werden dann zu gleichen Teilen der Verbrauch auf der Autobahn, in der Stadt und auf der Landstraße berücksichtigt.
Fahrten | Gefahrene Strecke in km | Kraftstoffverbrauch in l |
Autobahn | ||
Stadt | ||
Landstraße |
Berechne den durchschnittlichen Benzinverbrauch des Neuwagens auf 100 km.
- Es werden 7 Liter im Durchschnitt verbraucht.
Autobahn Stadt Landstraße 32,4 Liter : 4,5 = 7,2 Liter 19,5 Liter : 2,5 = 7,8 Liter 21 Liter : 3,5 =6 Liter 7,2 Liter + 7,8 Liter + 6 Liter = 21 Liter;21 Liter : 3 = 7 Liter
Aufgabe 19: Primzahl
Begründe, dass die Summe von 4 aufeinanderfolgenden natürlichen Zahlen keine Primzahl sein kann.
- Algebraischer Ansatz, z.B.:
Wenn n die erste dieser vier Zahlen ist, dann gilt:
- n + (n + 1) + (n + 2) + (n + 3) = 4n + 6 = 2(2n + 3); dies ist durch 2 teilbar und somit kann die Summe aus vier aufeinander folgender Zahlen keine Primzahl sein.
- oder inhaltlicher Ansatz, z.B.:
- Bei vier aufeinander folgenden natürlichen Zahlen werden zwei gerade und zwei ungerade Zahlen miteinander addiert. Die Summe zweier gerader Zahlen ergibt eine gerade Zahl und die Summe zweier ungerader Zahlen ergibt ebenfalls eine gerade Zahl. Die Summe dieser beiden Zahlen ergibt wieder eine gerade Zahl. Diese ist durch zwei teilbar, so dass die Summe von vier aufeinander folgenden Zahlen keine Primzahl sein kann.
- oder iterativer Ansatz, z.B.:
- 1 + 2 + 3 + 4 = 10 und 10 ist durch 2 teilbar (also keine Primzahl)
- 2 + 3 + 4 + 5 = 14 ist durch 2 teilbar (also keine Primzahl)
- und so weiter…
- Die Summe wächst jeweils um 4 und bleibt deswegen ständig durch 2 teilbar. Also kann die Summe aus vier aufeinander folgenden Zahlen keine Primzahl sein.
Aufgabe 20.1: Notendurchschnitte
Berechne den Durchschnitt der Noten der Klasse 9a. Runde auf eine Stelle nach dem Komma.
Note 1 2 3 4 5 6 Durchschnitt Anzahl 7 6 3 0 0 4 ???
- 2,6
Aufgabe 20.2: Notendurchschnitte
Gib eine mögliche Notenverteilung für 20 Schüler/innen an, so dass der Notendurchschnitt genau 3,0 beträgt.
Note 1 2 3 4 5 6 Durchschnitt Anzahl 3,0
Aufgabe 21: Runden
Zwei verschiedene natürliche Zahlen werden auf Zehner gerundet. In beiden Fällen erhält man 20.
Um wie viele Einer können sich die beiden Zahlen höchstens unterscheiden?
Kreuze an.
(!Um 3 Einer) (!Um 4 Einer) (!Um 5 Einer) (Um 9 Einer) (!Um 10 Einer)
Aufgabe 22: Rabatt
Elektro-Meier will sein Verkaufssortiment erweitern. Das Geschäft möchte zukünftig auch MP3-Player mit verbesserter Speicherkapazität anbieten können.
Von einer Herstellerfirma bekommt Meier folgendes Angebot:
Der Einkaufspreis für einen MP3-Player beträgt 40,- €. Bei Abnahme von mindestens 100 Stück werden 10 % und bei Abnahme von mindestens 150 Stück werden 15 % Mengenrabatt gegeben.
Welche Aussage ist falsch?
(Kauft Elektro-Meier 35 Stück ein, so bekommt er insgesamt 140,- € Rabatt.) (Wenn Elektro-Meier mindestens 50, aber höchstens 75 Stück einkauft, erhält er einen Rabatt von 2,- € pro Stück.)
Aufgabe 23: Cornflakes
Die beiden abgebildeten Packungen für Cornflakes haben die gleiche Form und sind beide vollständig mit Cornflakes gefüllt. Die kleine Packung enthält die Menge Cornflakes, die normalerweise für eine Person reicht. Wie viele solcher Portionen Cornflakes enthält dann die Familienpackung?
Kreuze an.
(!2) (!4) (!6) (8) (!12)
Aufgabe 24: Dreieck
Die (nicht maßstäbliche) Skizze zeigt das Dreieck ABC mit einem Umfang von 80 cm. c ist die längste Seite des Dreiecks.
Kreuze die richtige Aussage an. (!) (!) () (!)
Kreuze die richtige Aussage an. (!a = 40cm) (a < 40cm) (!a > 40cm) (!a = 80cm)
Aufgabe 25: Winkelgröße
Die Geraden t, h, und s verlaufen parallel zueinander. Bestimme den Winkel ß. Dein Vorgehen soll nachvollziehbar sein.
Hinweis: Die Zeichnung ist nicht maßstabsgerecht!
Aufgabe 26: Puzzleteile
Welches dieser Puzzleteile hat den größten Flächeninhalt? Kreuze an.
Aufgabe 27: Konstruierbare Dreiecke
Entscheide jeweils, ob sich mit den unten angegebenen Bestimmungsstücken (siehe auch Zeichnung) ein Dreieck (bis auf seine Lage) eindeutig konstruieren lässt. Ordne.
Hinweis: Die Zeichnung ist nicht maßstabsgerecht!
Bestimmungsstücke sind richtig | |||
Bestimmungsstücke sind falsch |
Aufgabe 28: Spiegelachse
Das Dreieck A'B'C' ist das Ergebnis einer Achsenspiegelung des Dreiecks ABC.
Zeichne die Spiegelachse g ein.
Aufgabe 29: Trapez
Kreuze die Eigenschaft an, die für jedes beliebige gleichschenklige Trapez gilt.
(!Die Diagonalen stehen senkrecht aufeinander.) (Die Diagonalen sind gleich lang.) (!Je zwei gegenüberliegende Seiten sind gleich lang.) (!Je zwei gegenüberliegende Seiten sind parallel.)
Aufgabe 30: Flussbreite
Benjamin ist 14 Jahre alt und geht in die 8. Klasse. Er absolviert ein zweiwöchiges Praktikum bei einem ortsansässigen Vermessungsamt und soll die ungefähre Breite eines Flusses bestimmen. Hierzu steckt er entlang des Flussufers eine Standlinie [AB] von 80 m ab. Von den Endpunkten A und B misst er zu einem an der anderen Uferseite stehenden Baum die Winkelmaße a = 35° und b = 55°.
Bestimme die Breite des Flusses mit Hilfe einer Zeichnung.