Benutzer:HWollny/Stauchung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 3: Zeile 3:
= Stammgruppe 1 =
= Stammgruppe 1 =
<gallery widths="200" heights="200" style="text-align:center">
<gallery widths="200" heights="200" style="text-align:center">
 
Datei:4 1.png
Datei:0.1 1.png
Datei:2 1.png
Datei:0.5 1.png
</gallery>
</gallery>


Zeile 17: Zeile 20:
* Verändert in der GeoGebra-Datei mit Hilfe des Schiebereglers oder des Eingabefeldes die Größe des Parameters '''a''' und beobachtet, wie sich der Graph und die Funktionsgleichung verändern.
* Verändert in der GeoGebra-Datei mit Hilfe des Schiebereglers oder des Eingabefeldes die Größe des Parameters '''a''' und beobachtet, wie sich der Graph und die Funktionsgleichung verändern.
* Diskutiert anschließend die Bedeutung des Parameters '''a''' in der Funktionsgleichung.
* Diskutiert anschließend die Bedeutung des Parameters '''a''' in der Funktionsgleichung.
<ggb_applet id="etgegesn" width="700" height="550" />'''
<ggb_applet id="vufyhkqn" width="700" height="550" />'''




Zeile 23: Zeile 26:


<gallery widths="200" heights="200" style="text-align:center">
<gallery widths="200" heights="200" style="text-align:center">
Datei:4 1.png|<small>Funktionsgleichung?</small>
Datei:0.1 1.png|<small>Funktionsgleichung?</small>
Datei:2 1.png|<small>Funktionsgleichung?</small>
Datei:0.5 1.png|<small>Funktionsgleichung?</small>


</gallery>
</gallery>
Zeile 33: Zeile 40:
# Diskutiert die Form der Graphen der Funktionen <math>f(x)=5x^2</math> und <math>g(x)=0.8x^2</math>, <span class="zum-farbe-Lernpfad">ohne</span> euch die Graphen anzuschauen.
# Diskutiert die Form der Graphen der Funktionen <math>f(x)=5x^2</math> und <math>g(x)=0.8x^2</math>, <span class="zum-farbe-Lernpfad">ohne</span> euch die Graphen anzuschauen.
# Überprüft auch hier eure Vermutungen mithilfe von Geogebra.
# Überprüft auch hier eure Vermutungen mithilfe von Geogebra.
<ggb_applet id="etgegesn" width="700" height="550" />'''


<span class="brainy hdg-file02 fa-5x"></span> <u>Zusammenfassen der Erkenntnisse</u>'''
<ggb_applet id="vufyhkqn" width="700" height="550" />
 
<span class="brainy hdg-file02 fa-5x"></span> '''<u>Zusammenfassen der Erkenntnisse</u>'''


Haltet eure Erkenntnisse über den Einfluss des Parameters '''a''' auf dem auf dem Arbeitsblatt zur Vorbereitung für die Expertenrunde fest. Nutzt als Beispiel die Funktion, für die ihr Expertin/Experte seid.
Haltet eure Erkenntnisse über den Einfluss des Parameters '''a''' auf dem auf dem Arbeitsblatt zur Vorbereitung für die Expertenrunde fest. Nutzt als Beispiel die Funktion, für die ihr Expertin/Experte seid.

Aktuelle Version vom 18. August 2022, 05:16 Uhr


Stammgruppe 1


Info

Die Funktionen, für die ihr Expertinnen und Experten seid, sind alles quadratische Funktionen der Form .

Der Buchstabe a in der Funktionsgleichung wird Parameter genannt, d.h. wir können für a verschiedene Werte einsetzen und erhalten immer andere Funktionen.


Was passiert mit dem Graphen, wenn a sich verändert?

  • Verändert in der GeoGebra-Datei mit Hilfe des Schiebereglers oder des Eingabefeldes die Größe des Parameters a und beobachtet, wie sich der Graph und die Funktionsgleichung verändern.
  • Diskutiert anschließend die Bedeutung des Parameters a in der Funktionsgleichung.
GeoGebra


Welche Funktionsgleichung gehört zu welchem Graphen?


hallo hallo hallo
  1. Ordnet gemeinsam euren Funktionsgraphen die passende Funktionsgleichung zu. Begründet kurz eure Entscheidungen.
  2. Überprüft eure Zuordnung anschließend mithilfe von Geogebra.
  1. Diskutiert die Form der Graphen der Funktionen und , ohne euch die Graphen anzuschauen.
  2. Überprüft auch hier eure Vermutungen mithilfe von Geogebra.
GeoGebra

Zusammenfassen der Erkenntnisse

Haltet eure Erkenntnisse über den Einfluss des Parameters a auf dem auf dem Arbeitsblatt zur Vorbereitung für die Expertenrunde fest. Nutzt als Beispiel die Funktion, für die ihr Expertin/Experte seid.

  • WICHTIG: Jeder von euch sollte gleich dazu bereit sein, eure Erkenntnisse den anderen Gruppen vorstellen zu können.
  • Falls ihr noch Probleme oder Fragen habt, dann tauscht euch in eurer Gruppe darüber aus.


Schon fertig?!

Gebt den passenden Wert von a in den Funktionen an.