Benutzer:Christian/test-2: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(20 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Navigation verstecken|{{Lernpfad Erdbeben und Logarithmus}}}}
<math>\cdot</math>
 
{{Autorenbox}}
{{Box|Info: Einstieg|Im letzten Kapitel bist du bereits auf die <u>'''Magnitude'''</u> gestoßen. Es ist in der Tat so, dass bei einem Beben der Magnitude 6,8 um ein Vielfaches mehr Energie freigesetzt wird, als bei einem der Magnitude 5,8. Das erklärt den Unterschied im Zerstörungspotential zwischen den Erdbeben 2020 in der Türkei. Steigt die Richter-Magnitude um 1, entspricht das einer <u>'''Ver-32-fachung'''</u> der freigesetzten Energiemenge. Bei einer Richter-Magnitude von 5,0 werden beispielsweise 10<sup>12</sup> Joule freigesetzt. Bei 6,0 sind es bereits 2,5 <math>\cdot</math> 10<sup>13</sup> Joule und bei 7,0 beträgt die Energiefreisetzung 10<sup>15</sup> Joule.<ref>Strahler, A. H. & Strahler, A. N. (2009). ''Physische Geographie''. Stuttgart: Verlag Eugen Ulmer.</ref>
<br />
 
Wie genau die <u>'''Richter-Magnitude'''</u> definiert ist und was das mit dem <u>'''Logarithmus'''</u> zu tun hat, erfährst du hier in diesem Abschnitt.
|Kurzinfo}}
 
{{Box|1=Merke: Definition der Richter-Magnitude|2=
 
Die <u>'''Richter-Magnitude'''</u> wird auch <u>'''Lokal-Magnitude'''</u> genannt. Diese Bezeichnung geht auf ihre Definition zurück. Sie lautet nach Franz Embacher (2013) folgendermaßen:
<br />
 
<blockquote>''In einer Entfernung von 100 km vom Epizentrum wird der durch das Beben verursachte Maximalausschlag A eines Seismometers nach Wood und Anderson gemessen und in Mikrometer [...] angegeben. Dann ist
<br />
<center><math>M = \lg A,</math></center>
<br />
wobei lg der Logarithmus zur Basis 10 ist.''<ref>Embacher, F. (2013). ''Erdbeben''. Zugriff am 2019.06.25 auf https://homepage.univie.ac.at/franz.embacher/Lehre/aussermathAnw2014/Erdbeben.pdf.</ref></blockquote>
<br />
 
Die Richter-Magnitude wird also anhand des <u>'''maximalen Ausschlages'''</u> (auch <u>'''Amplitude'''</u> genannt), gemessen von einem Seismographen nach Wood und Anderson, berechnet. Dabei handelt es sich jedoch um ein veraltetes Gerät, welches heute durch modernere Seismometer ersetzt wird. Was der <u>'''Logarithmus'''</u> in dieser Formel bedeutet, wollen wir uns jetzt ansehen.
 
<br />
 
[[Datei:Amplitude Sinus.png|400 px|center|Amplitude]]
 
|3=Merksatz}}
 
{{Box|1=Merke: Definition des Logarithmus|2=
 
Der <u>'''Logarithmus'''</u> <math>\log_{a} x</math> ("Logarithmus von x zur Basis a") mit <math>a,x \in \mathbb{R}^{+}</math>, <math>a \neq 1</math> ist jene Hochzahl, mit der man <math>a</math> potenzieren muss, um <math>x</math> zu erhalten.
Es gilt <math>\log_{a} x = y \Longleftrightarrow a^{y} = x</math> und <math>a^{\log_{a} x} = x</math>.
Die Zahl <math>a</math> wird in diesem Zusammenhang als <u>'''Basis'''</u> bezeichnet und <math>x</math> als <u>'''Numerus'''</u>.
<br />
 
Es gibt einige Logarithmen, welche besonders oft gebraucht werden. Beispielsweise den Logarithmus zur Basis <math>10</math>, er wird <u>'''dekadischer Logarithmus'''</u> (Kurzform: '''lg''') genannt. Oder jenen zur Basis <math>e</math>, er wird als <u>'''natürlicher Logarithmus'''</u> (Kurzform: '''ln''') bezeichnet. Wobei <math>e</math> die Eulersche Zahl ist. Das ist eine irrationale Zahl mit <math>e \approx 2,718</math>.
<br />
 
Du willst noch mehr über die Eulersche Zahl wissen? Für weitere Infos, klicke hier: [https://www.youtube.com/watch?v=-3_MUV1PwWQ Lernvideo: e - die Eulersche Zahl]
<br />
 
Sieh dir zum besseren Verständnis das folgende '''Video''' an:
 
<br />
{{#ev:youtube|iuG7isoQjGc|800|center}}
 
|3=Merksatz}}
 
{{Box|1=Aufgabe 9|
2=<u>'''Übungen Logarithmus A'''</u>
 
Sieh dir das Musterbeispiel an. Berechne anschließend die folgenden Logarithmen ohne Technologieeinsatz. Am '''Arbeitsplan (Aufgabe 9: Übungen Logarithmus A)''' hast du Platz dafür. <span class="brainy hdg-checklist02 fa-lg"></span>
<br />
 
<div style="background-color:#efefef;;padding:7px;">
'''Musterbeispiel''': <math>\log_{2} 8</math>
<br />
<u>1. Möglichkeit</u>: Überlege dir, mit welcher Zahl du <math>2</math> potenzieren musst, um <math>8</math> zu erhalten. Also ist <math>\log_{2} 8 = 3</math>.
<br />
<u>2. Möglichkeit</u>: <math>\log_{2} 8 = y \Longleftrightarrow 2^{y} = 8 \Longleftrightarrow y = 3</math>. Also ist <math>\log_{2} 8 = 3</math>.
</div>
 
<br />
 
<div class="grid">
<div class="width-1-2">
 
'''a)''' <math>\log_{3} 9</math>
 
'''b)''' <math>\log_{4} 64</math>
 
'''c)''' <math>\log_{4} \frac{1}{4}</math>
 
'''d)''' <math>\log_{3} \frac{1}{9}</math>
 
'''e)''' <math>\log_{2} \sqrt{2}</math>
 
'''f)''' <math>\log_{10} \sqrt{1000}</math>
 
'''g)''' <math>\log_{a} a</math>
 
'''h)''' <math>\log_{a} 1</math>
 
</div>
 
<div class="width-1-2">
 
{{Lösung versteckt|
 
'''a)''' <math>2</math>
 
'''b)''' <math>3</math>
 
'''c)''' <math>-1</math>
 
'''d)''' <math>-2</math>
 
'''e)''' <math>\frac{1}{2}</math>
 
'''f)''' <math>\frac{3}{2}</math>
 
'''g)''' <math>1</math>
 
'''h)''' <math>0</math>}}
 
</div>
</div>
 
|3=Arbeitsmethode}}
 
{{Box|1=Teste dein Wissen!|2=
 
<u>'''Übungen Logarithmus B'''</u>
 
<br />
 
{{H5p-zum|id=16052|height=640}}
 
|3=Üben}}
 
{{Box|1=Merke: Rechenregeln für Logarithmen|2=
 
Wie beim Rechnen mit Potenzen, gibt es auch für Logarithmen gewisse Rechenregeln.
 
Es seien <math>a \in \mathbb{R}^{+}, a \neq 1, x, x_{1}, x_{2}, \in  \mathbb{R}^{+} </math> und <math>r \in \mathbb{R} \setminus \{0\}</math>. Dann gilt:
<br />
 
# <math>\log_{a} (x_{1} \cdot x_{2}) = \log_{a} x_{1} + \log_{a} x_{2}</math>.
# <math>\log_{a} \frac{x_{1}}{x_{2}} = \log_{a} x_{1} - \log_{a} x_{2}</math>.
# <math>\log_{a} x^{r} = r \cdot \log_{a} x</math>.
# <math>\log_{a} 1 = 0, \log_{a} a = 1</math>.<ref>Neher, M. (2018). ''Anschauliche höhere Mathematik für Ingenieure und Naturwissenschaftler''. Wiesbaden: Springer Vieweg.</ref>
 
|3=Merksatz}}
 
{{Box|1=Aufgabe 10|
2=<u>'''Übungen Logarithmus C'''</u>
 
Wie du wahrscheinlich schon einmal gehört hast, wollen Mathematikerinnen und Mathematiker nichts glauben, sondern immer alles beweisen. Wir versuchen jetzt ebenso, die Rechenregeln für Logarithmen zu beweisen. Das funktioniert mithilfe der Rechenregeln für Potenzen. Falls dir diese nicht mehr geläufig sind, klicke [https://www.youtube.com/watch?v=aUK2-Svw4o4 hier].
<br />
 
Sieh dir zuerst das Musterbeispiel (1. Regel) an, um eine Vorstellung zu bekommen, wie die Beweise funktionieren. Versuche anschließend gemeinsam mit einer Mitschülerin oder einem Mitschüler, die restlichen Regeln zu beweisen. Am '''Arbeitsplan (Aufgabe 10: Übungen Logarithmus C)''' habt ihr Platz dafür. <span class="brainy hdg-checklist02 fa-lg"></span>
<br />
 
<div style="background-color:#efefef;;padding:7px;">
'''Musterbeispiel''': 1. <math>\log_{a} (x_{1} \cdot x_{2}) = \log_{a} x_{1} + \log_{a} x_{2}</math>.
<br />
<u>Beweis</u>: Wir definieren die Logarithmen zunächst folgendermaßen <math>y_{1} := \log_{a} x_{1}, y_{2} := \log_{a} x_{2} </math>, das heißt <math>a^{y_{1}} = x_{1}, a^{y_{2}} = x_{2}</math> (''Definition des Logarithmus'').
 
<math>\log_{a} (x_{1} \cdot x_{2}) =</math> (''Einsetzen der obigen Definition'') <math>= \log_{a} (a^{y_{1}} \cdot a^{y_{2}}) =</math> (''Anwendung der Rechenregel für Potenzen'') <math>= \log_{a} (a^{y_{1}+y_{2}}) =</math> (''Definition des Logarithmus'') <math>= y_{1} + y_{2} =</math> (''Einsetzen der obigen Definition'') <math>= \log_{a} x_{1} + \log_{a} x_{2}</math>.
</div>
 
<br />
'''a) Versuche nun, die Regeln 2. - 4. gemeinsam mit einer Mitschülerin oder einem Mitschüler zu beweisen. Falls ihr Hilfe braucht, klickt unten auf "Hilfe anzeigen"'''. <span class="brainy hdg-spech-bubbles fa-lg"></span>
 
<br />
[[Kategorie:Mathematik]]
[[Kategorie:Geographie]]
[[Kategorie:Lernpfad]]
[[Kategorie:Sekundarstufe 2]]

Aktuelle Version vom 9. November 2021, 14:49 Uhr